重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
建立索引后 插入大量数据回很慢.解决办法就是在插入大量数据之前先不要索引或删除索引,然后再建立索引。
创新互联公司为企业级客户提高一站式互联网+设计服务,主要包括做网站、成都网站制作、重庆APP开发公司、小程序定制开发、宣传片制作、LOGO设计等,帮助客户快速提升营销能力和企业形象,创新互联各部门都有经验丰富的经验,可以确保每一个作品的质量和创作周期,同时每年都有很多新员工加入,为我们带来大量新的创意。
MySQL的最佳是单表百万级,一旦上到千万级就慢了,只能分表,分表不行就集群或者换数据库吧。
1.SQL你基础不怎么好 ,sql中尽量少使用 select *
2.索引字段类型注意下
这两个优化好 一般速度不会很慢 ,再慢的话 看下你数据库服务器吧
经常清理垃圾,才能保证电脑流畅。
试试腾讯电脑管家,垃圾清理和电脑加速这两个功能是同类软件必备的功能
清理加速,会从多方面对系统内部会产生运行阻碍的数据文件进行碎片整合,包括系统垃圾、视频垃圾、网游垃圾、恶意插件等多方面进行清理,同时还可以进行自动清理“扫一扫”,根据需要可以进行定期清理设定。
数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。
可以做表拆分,减少单表字段数量,优化表结构。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。
主要两种拆分 垂直拆分,水平拆分。
垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
水平分库分表切分规则
1. RANGE
从0到10000一个表,10001到20000一个表;
2. HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3. 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4. 时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。
问题
我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?
实验
我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。
写个简单的脚本,制造一批带主键和不带主键的表:
执行一下脚本:
现在执行以下 SQL 看看效果:
...
执行了 16.80s,感觉是非常慢了。
现在用一下 DBA 三板斧,看看执行计划:
感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。
那我们来 show warnings 看看 MySQL 改写后的 SQL:
我们格式化一下 SQL:
可以看到 MySQL 将
select from A where A.x not in (select x from B) //非关联子查询
转换成了
select from A where not exists (select 1 from B where B.x = a.x) //关联子查询
如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:
select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,
而关联子查询就需要循环迭代:
select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的第一条满足 rA 条件的记录。
显然,关联子查询的扫描成本会高于非关联子查询。
我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。
...
可以看到执行时间变成了 0.67s。
整理
我们诊断的关键点如下:
\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。
\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。
\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。
但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。
从explain开始说起吧,很显然第一个sql语句压根没用任何索引(key列内什么都没有)!第二个倒是用到索引,却是主键索引,并非你添加的fulltext索引!
接下来,分析下原因:
sql1:执行步骤:先s_a和s_a_t两表笛卡尔集,然后筛选满足on条件的,接着在从结果集中筛选满足where字句的;该过程中处理的记录条目为69*105479,并且未用到任何索引,未用到的原因可能是你先定义了一个复合索引a_concent_split(a_title_split,a_content_split),然后又定义了一个a_content_split2(a_content_split),当引擎执行查找优化时候会先用到a_content_split,可是又由于复合索引是从最左边开始(不能跳过第一个字段),而你却忽略了a_title_split字段,故未能正常使用索引。
sql2:执行步骤:先调用where字句对s_a表进行筛选形成新的s_a表,然后与s_a_t表笛卡尔积,再利用on字句筛选,最后再次利用where字句形成最终结果集;经过第一个where,该过程处理结果集会大幅少于sql1,并且该过程还用到了主键索引。你所设置的fulltext索引再次没有用到,原因是like字句中开始部分为模糊匹配%时候用不了全文索引,这与fulltext存储机制有关。
另,你说的删除速度慢,原因:设置fulltext字段设置太多,fulltext索引在更新删除大量数据时候,需要同步更改索引,你的三个fulltext压力太大!
改进方法:1、删除a_content_split索引重试 2、在删除时候打开delay_key_write变量
有关fulltext比较复杂,用的时候要谨慎设置,还有很多参数也对其有影响
另外sql语句中外连接有关on where字句也是个比较绕的地方,两者你都占了,唉,所以我写的略复杂,前天看到该问题,思忖两天这才作答
望有结果了予以回复交流!