重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言量化分析,golang量化

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

温宿网站建设公司创新互联,温宿网站设计制作,有大型网站制作公司丰富经验。已为温宿上千余家提供企业网站建设服务。企业网站搭建\成都外贸网站建设要多少钱,请找那个售后服务好的温宿做网站的公司定做!

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

六星教育:Python和go语言都很火,我要怎么选?

python和go语言有区别:1、Python语法使用缩进来指示代码块;Go语法基于打开和关闭括号;2、Python是基于面向对象编程的多范式语言;Go是基于并发编程范式的过程编程语言。3、Python是动态类型语言,Go是静态类型语言。

Go语言(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态强类型、编译型语言。Go 语言语法与 C 相近,但功能上有:内存安全,GC(垃圾回收),结构形态以及 CSP-style 并发计算。

python是一种广泛使用的具有动态语义的解释型,面向对象的高级编程语言。

Python是一种面向对象的高级编程语言,具有集成的动态语义,主要用于Web和应用程序开发。它在快速应用程序开发领域极具吸引力,因为它提供动态类型和动态绑定选项。

Python是一种解释型语言,这意味着用Python编写的程序不需要事先编译就可以运行,从而可以轻松地测试小段代码并使用Python编写的代码更容易在平台之间移动。

python和go语言的区别:

1、语法

Python的语法使用缩进来指示代码块。Go的语法基于打开和关闭括号。

2、范例

Python是一种基于面向对象编程的多范式,命令式和函数式编程语言。它坚持这样一种观点,即如果一种语言在某些情境中表现出某种特定的方式,理想情况下它应该在所有情境中都有相似的作用。但是,它又不是纯粹的OOP语言,它不支持强封装,这是OOP的主要原则之一。

Go是一种基于并发编程范式的过程编程语言,它与C具有表面相似性。实际上,Go更像是C的更新版本。

3、并发

Python没有提供内置的并发机制,而Go有内置的并发机制。

4、类型化

Python是动态类型语言,而Go是一种静态类型语言,它实际上有助于在编译时捕获错误,这可以进一步减少生产后期的严重错误。

5、安全性

Python是一种强类型语言,它是经过编译的,因此增加了一层安全性。Go具有分配给每个变量的类型,因此,它提供了安全性。但是,如果发生任何错误,用户需要自己运行整个代码。

6、管理内存

Go允许程序员在很大程度上管理内存。而,Python中的内存管理完全自动化并由Python VM管理;它不允许程序员对内存管理负责。

7、库

与Go相比,Python提供的库数量要大得多。然而,Go仍然是新的,并且还没有取得很大进展。

8、速度:

Go的速度远远超过Python。

Python与Golang对比:

1、特点:

Golang

①静态强类型、编译型、并发型

静态类型语言,但是有动态语言的感觉。(静态类型的语言就是可以在编译的时候检查出来隐藏的大多数问题,动态语言的感觉就是有很多的包可以使用,写起来的效率很高)

可直接编译成机器码,不依赖其他库,glibc的版本有一定要求,部署就是扔一个文件上去就完成了。

语言层面支持并发,这个就是Go最大的特色,天生的支持并发。Go就是基因里面支持的并发,可以充分地利用多核,很容易地使用并发。

②垃圾回收机制

内置runtime,支持垃圾回收,这属于动态语言的特性之一吧,虽然目前来说GC(内存垃圾回收机制)不算完美,但是足以应付我们所能遇到的大多数情况,特别是Go1.1之后的GC。

③支持面向对象编程

有接口类型和实现类型的概念,但是用嵌入替代了继承。

④丰富的标准库

Go目前已经内置了大量的库,特别是网络库非常强大。

⑤内嵌C支持

Go里面也可以直接包含C代码,利用现有的丰富的C库

Python

①解释型语言

程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码。这样解释型语言每执行一次就要翻译一次,效率比较低。

②动态数据类型 

支持重载运算符,也支持泛型设计。(运算符重载,就是对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型。泛型设计就是定义的时候不需要指定类型,在客户端使用的时候再去指定类型)

③完全面向对象的语言

函数,模块,数字,字符串都是对象,在Python中,一切接对象

完全支持继承,重载,多重继承 

④拥有强大的标准库

Python语言的核心只包含数字,字符串,列表,元祖,字典,集合,文件等常见类型和函数,而由Python标准库提供了系统管理,网络通信,文本处理,数据库接口,图形系统,XML处理等额外的功能。

⑤社区提供了大量第三方库

Python 社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖 科学计算、人工智能、机器学习、Web 开发、数据库接口、图形系统 多个领域。

2、应用

Python

①网络编程

web应用,网络爬虫

②数据分析和机器学习

③自动化测试

④自动化运维

Golang

①服务器编程

处理日志、数据打包、虚拟机处理、文件系统等。

②分布式系统,数据库代理器等

③网络编程

这一块目前应用最广,包括Web应用、API应用、下载应用。

④内存数据库

如google开发的groupcache,couchbase的部分组件。

⑥云平台

Go语言和Python学哪个好?

Python 可以很好地集成到企业级应用中,可用于机器语言和 AI 应用。Go 语言的特点表明它具备轻量级线程实现(Goroutine)、智能标准库、强大的内置安全性,且可使用最简语法进行编程。Go 在大部分案例中领先,被认为是 Python 的有效替代方案。开发者在选择编程语言时,应考虑开发项目的性质和规模,以及所需的技能组合。

放下个人偏见和喜好,从优点和功能的角度来评价两种语言。不管选择了哪种语言,Go 和 Python 都在持续演进。尽管在大多数情况下 Golang 可能是更好的选择,但Python语言也是不断更新迭代的。以上就是本次分享的全部内容,如果你也想学习一门编程语言,可以考虑下 六星教育 ,这里的课程体系,师资团队以及售后服务,一定不会让你失望!

如何看待go语言泛型的最新设计?

Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成为现实。Go 团队实施了一个看起来比较稳定的设计草案,并且正以源到源翻译器原型的形式获得关注。本文讲述的是泛型的最新设计,以及如何自己尝试泛型。

例子

FIFO Stack

假设你要创建一个先进先出堆栈。没有泛型,你可能会这样实现:

type Stack []interface{}func (s Stack) Peek() interface{} {

return s[len(s)-1]

}

func (s *Stack) Pop() {

*s = (*s)[:

len(*s)-1]

}

func (s *Stack) Push(value interface{}) {

*s = 

append(*s, value)

}

但是,这里存在一个问题:每当你 Peek 项时,都必须使用类型断言将其从 interface{} 转换为你需要的类型。如果你的堆栈是 *MyObject 的堆栈,则意味着很多 s.Peek().(*MyObject)这样的代码。这不仅让人眼花缭乱,而且还可能引发错误。比如忘记 * 怎么办?或者如果您输入错误的类型怎么办?s.Push(MyObject{})` 可以顺利编译,而且你可能不会发现到自己的错误,直到它影响到你的整个服务为止。

通常,使用 interface{} 是相对危险的。使用更多受限制的类型总是更安全,因为可以在编译时而不是运行时发现问题。

泛型通过允许类型具有类型参数来解决此问题:

type Stack(type T) []Tfunc (s Stack(T)) Peek() T {

return s[len(s)-1]

}

func (s *Stack(T)) Pop() {

*s = (*s)[:

len(*s)-1]

}

func (s *Stack(T)) Push(value T) {

*s = 

append(*s, value)

}

这会向 Stack 添加一个类型参数,从而完全不需要 interface{}。现在,当你使用 Peek() 时,返回的值已经是原始类型,并且没有机会返回错误的值类型。这种方式更安全,更容易使用。(译注:就是看起来更丑陋,^-^)

此外,泛型代码通常更易于编译器优化,从而获得更好的性能(以二进制大小为代价)。如果我们对上面的非泛型代码和泛型代码进行基准测试,我们可以看到区别:

type MyObject struct {

int

}

var sink MyObjectfunc BenchmarkGo1(b *testing.B) {

for i := 0; i  b.N; i++ {

var s Stack

s.Push(MyObject{})

s.Push(MyObject{})

s.Pop()

sink = s.Peek().(MyObject)

}

}

func BenchmarkGo2(b *testing.B) {

for i := 0; i  b.N; i++ {

var s Stack(MyObject)

s.Push(MyObject{})

s.Push(MyObject{})

s.Pop()

sink = s.Peek()

}

}

结果:

BenchmarkGo1BenchmarkGo1-16     12837528         87.0 ns/op       48 B/op        2 allocs/opBenchmarkGo2BenchmarkGo2-16     28406479         41.9 ns/op       24 B/op        2 allocs/op

在这种情况下,我们分配更少的内存,同时泛型的速度是非泛型的两倍。

合约(Contracts)

上面的堆栈示例适用于任何类型。但是,在许多情况下,你需要编写仅适用于具有某些特征的类型的代码。例如,你可能希望堆栈要求类型实现 String() 函数

GO语言商业案例(十八):stream

切换到新语言始终是一大步,尤其是当您的团队成员只有一个时有该语言的先前经验。现在,Stream 的主要编程语言从 Python 切换到了 Go。这篇文章将解释stream决定放弃 Python 并转向 Go 的一些原因。

Go 非常快。性能类似于 Java 或 C++。对于用例,Go 通常比 Python 快 40 倍。

对于许多应用程序来说,编程语言只是应用程序和数据库之间的粘合剂。语言本身的性能通常并不重要。然而,Stream 是一个API 提供商,为 700 家公司和超过 5 亿最终用户提供提要和聊天平台。多年来,我们一直在优化 Cassandra、PostgreSQL、Redis 等,但最终,您会达到所使用语言的极限。Python 是一门很棒的语言,但对于序列化/反序列化、排名和聚合等用例,它的性能相当缓慢。我们经常遇到性能问题,Cassandra 需要 1 毫秒来检索数据,而 Python 会花费接下来的 10 毫秒将其转换为对象。

看看我如何开始 Go 教程中的一小段 Go 代码。(这是一个很棒的教程,也是学习 Go 的一个很好的起点。)

如果您是 Go 新手,那么在阅读那个小代码片段时不会有太多让您感到惊讶的事情。它展示了多个赋值、数据结构、指针、格式和一个内置的 HTTP 库。当我第一次开始编程时,我一直喜欢使用 Python 更高级的功能。Python 允许您在编写代码时获得相当的创意。例如,您可以:

这些功能玩起来很有趣,但是,正如大多数程序员会同意的那样,在阅读别人的作品时,它们通常会使代码更难理解。Go 迫使你坚持基础。这使得阅读任何人的代码并立即了解发生了什么变得非常容易。 注意:当然,它实际上有多“容易”取决于您的用例。如果你想创建一个基本的 CRUD API,我仍然推荐 Django + DRF或 Rails。

作为一门语言,Go 试图让事情变得简单。它没有引入许多新概念。重点是创建一种非常快速且易于使用的简单语言。它唯一具有创新性的领域是 goroutine 和通道。(100% 正确CSP的概念始于 1977 年,所以这项创新更多是对旧思想的一种新方法。)Goroutines 是 Go 的轻量级线程方法,通道是 goroutines 之间通信的首选方式。Goroutines 的创建非常便宜,并且只需要几 KB 的额外内存。因为 Goroutine 非常轻量,所以有可能同时运行数百甚至数千个。您可以使用通道在 goroutine 之间进行通信。Go 运行时处理所有复杂性。goroutines 和基于通道的并发方法使得使用所有可用的 CPU 内核和处理并发 IO 变得非常容易——所有这些都不会使开发复杂化。与 Python/Java 相比,在 goroutine 上运行函数需要最少的样板代码。您只需在函数调用前加上关键字“go”:

Go 的并发方法很容易使用。与 Node 相比,这是一种有趣的方法,开发人员必须密切关注异步代码的处理方式。Go 中并发的另一个重要方面是竞争检测器。这样可以很容易地确定异步代码中是否存在任何竞争条件。

我们目前用 Go 编写的最大的微服务编译需要 4 秒。与以编译速度慢而闻名的 Java 和 C++ 等语言相比,Go 的快速编译时间是一项重大的生产力胜利。我喜欢在程序编译的时候摸鱼,但在我还记得代码应该做什么的同时完成事情会更好。

首先,让我们从显而易见的开始:与 C++ 和 Java 等旧语言相比,Go 开发人员的数量并不多。根据StackOverflow的数据, 38% 的开发人员知道 Java, 19.3% 的人知道 C++,只有 4.6% 的人知道 Go。GitHub 数据显示了类似的趋势:Go 比 Erlang、Scala 和 Elixir 等语言使用更广泛,但不如 Java 和 C++ 流行。幸运的是,Go 是一种非常简单易学的语言。它提供了您需要的基本功能,仅此而已。它引入的新概念是“延迟”声明和内置的并发管理与“goroutines”和通道。(对于纯粹主义者来说:Go 并不是第一种实现这些概念的语言,只是第一种使它们流行起来的语言。)任何加入团队的 Python、Elixir、C++、Scala 或 Java 开发人员都可以在一个月内在 Go 上发挥作用,因为它的简单性。与许多其他语言相比,我们发现组建 Go 开发人员团队更容易。如果您在博尔德和阿姆斯特丹等竞争激烈的生态系统中招聘人员,这是一项重要的优势。

对于我们这样规模的团队(约 20 人)来说,生态系统很重要。如果您必须重新发明每一个小功能,您根本无法为您的客户创造价值。Go 对我们使用的工具有很好的支持。实体库已经可用于 Redis、RabbitMQ、PostgreSQL、模板解析、任务调度、表达式解析和 RocksDB。与 Rust 或 Elixir 等其他较新的语言相比,Go 的生态系统是一个重大胜利。它当然不如 Java、Python 或 Node 之类的语言好,但它很可靠,而且对于许多基本需求,你会发现已经有高质量的包可用。

Gofmt 是一个很棒的命令行实用程序,内置在 Go 编译器中,用于格式化代码。就功能而言,它与 Python 的 autopep8 非常相似。我们大多数人并不真正喜欢争论制表符与空格。格式的一致性很重要,但实际的格式标准并不那么重要。Gofmt 通过使用一种正式的方式来格式化您的代码来避免所有这些讨论。

Go 对协议缓冲区和 gRPC 具有一流的支持。这两个工具非常适合构建需要通过 RPC 通信的微服务。您只需要编写一个清单,在其中定义可以进行的 RPC 调用以及它们采用的参数。然后从这个清单中自动生成服务器和客户端代码。生成的代码既快速又具有非常小的网络占用空间并且易于使用。从同一个清单中,您甚至可以为许多不同的语言生成客户端代码,例如 C++、Java、Python 和 Ruby。因此,内部流量不再有模棱两可的 REST 端点,您每次都必须编写几乎相同的客户端和服务器代码。.

Go 没有像 Rails 用于 Ruby、Django 用于 Python 或 Laravel 用于 PHP 那样的单一主导框架。这是 Go 社区内激烈争论的话题,因为许多人主张你不应该一开始就使用框架。我完全同意这对于某些用例是正确的。但是,如果有人想构建一个简单的 CRUD API,他们将更容易使用 Django/DJRF、Rails Laravel 或Phoenix。对于 Stream 的用例,我们更喜欢不使用框架。然而,对于许多希望提供简单 CRUD API 的新项目来说,缺乏主导框架将是一个严重的劣势。

Go 通过简单地从函数返回错误并期望调用代码来处理错误(或将其返回到调用堆栈)来处理错误。虽然这种方法有效,但很容易失去问题的范围,以确保您可以向用户提供有意义的错误。错误包通过允许您向错误添加上下文和堆栈跟踪来解决此问题。另一个问题是很容易忘记处理错误。像 errcheck 和 megacheck 这样的静态分析工具可以方便地避免犯这些错误。虽然这些变通办法效果很好,但感觉不太对劲。您希望该语言支持正确的错误处理。

Go 的包管理绝不是完美的。默认情况下,它无法指定特定版本的依赖项,也无法创建可重现的构建。Python、Node 和 Ruby 都有更好的包管理系统。但是,使用正确的工具,Go 的包管理工作得很好。您可以使用Dep来管理您的依赖项,以允许指定和固定版本。除此之外,我们还贡献了一个名为的开源工具VirtualGo,它可以更轻松地处理用 Go 编写的多个项目。

我们进行的一个有趣的实验是在 Python 中使用我们的排名提要功能并在 Go 中重写它。看看这个排名方法的例子:

Python 和 Go 代码都需要执行以下操作来支持这种排名方法:

开发 Python 版本的排名代码大约花了 3 天时间。这包括编写代码、单元测试和文档。接下来,我们花了大约 2 周的时间优化代码。其中一项优化是将分数表达式 (simple_gauss(time)*popularity) 转换为抽象语法树. 我们还实现了缓存逻辑,可以在未来的特定时间预先计算分数。相比之下,开发此代码的 Go 版本大约需要 4 天时间。性能不需要任何进一步的优化。因此,虽然 Python 的最初开发速度更快,但基于 Go 的版本最终需要我们团队的工作量大大减少。另外一个好处是,Go 代码的执行速度比我们高度优化的 Python 代码快大约 40 倍。现在,这只是我们通过切换到 Go 体验到的性能提升的一个示例。

与 Python 相比,我们系统的其他一些组件在 Go 中构建所需的时间要多得多。作为一个总体趋势,我们看到 开发 Go 代码需要更多的努力。但是,我们花更少的时间 优化 代码以提高性能。

我们评估的另一种语言是Elixir.。Elixir 建立在 Erlang 虚拟机之上。这是一种迷人的语言,我们之所以考虑它,是因为我们的一名团队成员在 Erlang 方面拥有丰富的经验。对于我们的用例,我们注意到 Go 的原始性能要好得多。Go 和 Elixir 都可以很好地服务数千个并发请求。但是,如果您查看单个请求的性能,Go 对于我们的用例来说要快得多。我们选择 Go 而不是 Elixir 的另一个原因是生态系统。对于我们需要的组件,Go 有更成熟的库,而在许多情况下,Elixir 库还没有准备好用于生产环境。培训/寻找开发人员使用 Elixir 也更加困难。这些原因使天平向 Go 倾斜。Elixir 的 Phoenix 框架看起来很棒,绝对值得一看。

Go 是一种非常高性能的语言,对并发有很好的支持。它几乎与 C++ 和 Java 等语言一样快。虽然与 Python 或 Ruby 相比,使用 Go 构建东西确实需要更多时间,但您将节省大量用于优化代码的时间。我们在Stream有一个小型开发团队,为超过 5 亿最终用户提供动力和聊天。Go 结合了 强大的生态系统 、新开发人员的 轻松入门、快速的性能 、对并发的 可靠支持和高效的编程环境 ,使其成为一个不错的选择。Stream 仍然在我们的仪表板、站点和机器学习中利用 Python 来提供个性化的订阅源. 我们不会很快与 Python 说再见,但今后所有性能密集型代码都将使用 Go 编写。我们新的聊天 API也完全用 Go 编写。


网页题目:go语言量化分析,golang量化
分享链接:http://cqcxhl.com/article/hsegip.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP