重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python散点函数图例,python散点矩阵图

python--seaborn散点图

在seaborn中,绘制散点图的函数有 scatterplot 和 relplot 。

为阿勒泰等地区用户提供了全套网页设计制作服务,及阿勒泰网站建设行业解决方案。主营业务为成都做网站、网站制作、阿勒泰网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

seaborn 绘制散点图最简单的方式是使用 scatterplot 方法,指定 data 参数和 x 和 y 参数。

添加 hue 参数,设置点的分组颜色。

添加 style 参数,设置点的分组样式。

添加 size 参数,设置点的分组大小。

hue , style , size 参数可以同时设置多个。

分面散点图用 relplot 方法绘制,需要设置 kind="scatter" ,然后使用 col , row 参数分面。

python 绘制三维图形、三维数据散点图

1. 绘制3D曲面图

from matplotlib import pyplot as plt

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

fig=plt.figure()

ax=Axes3D(fig)

x=np.arange(-4,4,0.25)

y=np.arange(-4,4,0.25)

x,y=np.meshgrid(x,y)

r=np.sqrt(x**2, y**2)

z=np.sin(r)

//绘面函数

ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=“rainbow”

plt.show()

2.绘制三维的散点图(表述一些数据点分布)

4a.mat数据地址:http blog.csdn.net/eddy_zhang/article/details/50496164

from matplotlib import pyplot as plt

import scipy.io as sio

from mpl_toolkits.mplot3d import Axes3D

matl=‘4a.mat’

data=sio.loadmat(matl)

m=data[‘data’]

x,y,z=m[0],m[1],m[2]

//创建一个绘图工程

ax=plt.subplot(111,project=‘3D’)

//将数据点分成三部分画,在颜色上有区分度

ax.scatter(x[:1000], y[:1000], z[:1000],c=‘y’ )//绘制数据点

ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=‘r’ )//绘制数据点

ax.scatter(x[4000:], y[4000:], z[4000:],c=‘g’ )//绘制数据点

ax.set_zlable(‘z’)//坐标轴

ax.set_ylable(‘y’)//坐标轴

ax.set_xlable(‘x’)

plt.show()

Python实现彩色散点图绘制(利用色带对散点图进行颜色渲染)

接受自己的普通,然后全力以赴的出众,告诉自己要努力,但不要着急....

当然, 这个结果并不是我真正想要的,Pass, 太丑了!

好吧,安排,我们先看下实现后的效果!

这个效果自然就比之前的好多了!

实现python散点图绘制需要用到matplotlib库, matplotlib库是专门用于可视化绘图的工具库;学习一个新的库当然看官方文档了:

实现思路:

matplotlib.pyplot.scatter() 函数是专门绘制散点图的函数:

matplotlib.pyplot.scatter ( x, y , s=None , c=None , marker=None , cmap=None , norm=None , vmin=None , vmax=None , alpha=None , linewidths=None , verts=None , edgecolors=None , ***, data=None , ** kwargs ) **

plt.scatter(observation, estimate, c=Z1, cmap=colormap, marker=".", s=marker_size, norm=colors.LogNorm(vmin=Z1.min(), vmax=0.5 * Z1.max()))

其中:

1、c参数为计算的散点密度;

2、cmap为色带(matplotlib里面自带了很多色带可供选择),参见:

3、由于计算的散点密度数值大小分散,因此利用norm参数对散点密度Z1进行归一化处理(归一化方式很多,参见colors类),并给归一化方式设置色带刻度的最大最小值vmin和vmax(一般这两个参数就是指定散点密度的最小值和最大值),这样就建立起了密度与色带的映射关系。

(这里的结果与前面展示的相比改变了计算散点密度的半径:radius = 3以及绘制散点图的散点大小marksize)

作者能力水平有限,欢迎各位批评指正!

python多维数据怎么绘制散点图

python matplotlib模块,是扩展的MATLAB的一个绘图工具库。他可以绘制各种图形,可是最近最的一个小程序,得到一些三维的数据点图,就学习了下python中的matplotlib模块,如何绘制三维图形。

初学者,可能对这些第三方库安装有一定的小问题,对于一些安装第三方库经验较少的朋友,建议使用 Anaconda ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了(PS:后面的demo是python2.7):

首先提醒注意,以下两个函数的区别:

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow') #绘面1

ax.scatter(x[1000:4000],y[1000:4000],z[1000:4000],c='r') #绘点1

1、绘制3D曲面图

# -*- coding: utf-8 -*-"""

Created on Thu Sep 24 16:17:13 2015

@author: Eddy_zheng

"""from matplotlib import pyplot as pltimport numpy as npfrom mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = Axes3D(fig)

X = np.arange(-4, 4, 0.25)

Y = np.arange(-4, 4, 0.25)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X**2 + Y**2)

Z = np.sin(R)# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')

plt.show()1234567891011121314151617181920212223

效果展示:

2、绘制三维的散点图(通常用于表述一些数据点分布)

4a.mat 数据地址,找到4a.mat 下载即可:

# -*- coding: utf-8 -*-"""

Created on Thu Sep 24 16:37:21 2015

@author: Eddy_zheng

"""import scipy.io as sio  

from mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as plt

mat1 = '4a.mat' #这是存放数据点的文件,需要它才可以画出来。上面有下载地址data = sio.loadmat(mat1)

m = data['data']

x,y,z = m[0],m[1],m[2]

ax=plt.subplot(111,projection='3d') #创建一个三维的绘图工程#将数据点分成三部分画,在颜色上有区分度ax.scatter(x[:1000],y[:1000],z[:1000],c='y') #绘制数据点ax.scatter(x[1000:4000],y[1000:4000],z[1000:4000],c='r')

ax.scatter(x[4000:],y[4000:],z[4000:],c='g')

ax.set_zlabel('Z') #坐标轴ax.set_ylabel('Y')

ax.set_xlabel('X')

plt.show()123456789101112131415161718192021222324252627

效果:

上面就是学习区分了下两个函数,当时还被小困惑了下,希望对大家有所帮助。其实里面还有好多参数设置,比如说改变颜色,包括绘制点图的点的形状等都是可以改变的,有需要的大家可以自己看看这个函数,学习下(help(对应的function))。

版权声明:本文为博主原创文章,未经博主允许不得转载。Eddy_zheng


本文标题:python散点函数图例,python散点矩阵图
文章地址:http://cqcxhl.com/article/hsisph.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP