重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了“有哪些Go加密解密算法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“有哪些Go加密解密算法”吧!
眉山ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!
md5
MD5信息摘要算法是一种被广泛使用的密码散列函数,可以产生出一个128位(16进制,32个字符)的散列值(hash value),用于确保信息传输完整一致。
func GetMd5String(s string) string { h := md5.New() h.Write([]byte(s)) return hex.EncodeToString(h.Sum(nil)) }
hmac
HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,
它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。
和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。
示例
//key随意设置 data 要加密数据 func Hmac(key, data string) string { hash:= hmac.New(md5.New, []byte(key)) // 创建对应的md5哈希加密算法 hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) } func HmacSha256(key, data string) string { hash:= hmac.New(sha256.New, []byte(key)) //创建对应的sha256哈希加密算法 hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) }
sha1
SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。
func Sha1(data string) string { sha1 := sha1.New() sha1.Write([]byte(data)) return hex.EncodeToString(sha1.Sum([]byte(""))) }
AES
密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES(Data Encryption Standard),已经被多方分析且广为全世界所使用。AES中常见的有三种解决方案,分别为AES-128、AES-192和AES-256。如果采用真正的128位加密技术甚至256位加密技术,蛮力攻击要取得成功需要耗费相当长的时间。
AES 有五种加密模式:
电码本模式(Electronic Codebook Book (ECB))、
密码分组链接模式(Cipher Block Chaining (CBC))、
计算器模式(Counter (CTR))、
密码反馈模式(Cipher FeedBack (CFB))
输出反馈模式(Output FeedBack (OFB))
ECB模式
出于安全考虑,golang默认并不支持ECB模式。
package main import ( "crypto/aes" "fmt" ) func AESEncrypt(src []byte, key []byte) (encrypted []byte) { cipher, _ := aes.NewCipher(generateKey(key)) length := (len(src) + aes.BlockSize) / aes.BlockSize plain := make([]byte, length*aes.BlockSize) copy(plain, src) pad := byte(len(plain) - len(src)) for i := len(src); i < len(plain); i++ { plain[i] = pad } encrypted = make([]byte, len(plain)) // 分组分块加密 for bs, be := 0, cipher.BlockSize(); bs <= len(src); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() { cipher.Encrypt(encrypted[bs:be], plain[bs:be]) } return encrypted } func AESDecrypt(encrypted []byte, key []byte) (decrypted []byte) { cipher, _ := aes.NewCipher(generateKey(key)) decrypted = make([]byte, len(encrypted)) // for bs, be := 0, cipher.BlockSize(); bs < len(encrypted); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() { cipher.Decrypt(decrypted[bs:be], encrypted[bs:be]) } trim := 0 if len(decrypted) > 0 { trim = len(decrypted) - int(decrypted[len(decrypted)-1]) } return decrypted[:trim] } func generateKey(key []byte) (genKey []byte) { genKey = make([]byte, 16) copy(genKey, key) for i := 16; i < len(key); { for j := 0; j < 16 && i < len(key); j, i = j+1, i+1 { genKey[j] ^= key[i] } } return genKey } func main() { source:="hello world" fmt.Println("原字符:",source) //16byte密钥 key:="1443flfsaWfdas" encryptCode:=AESEncrypt([]byte(source),[]byte(key)) fmt.Println("密文:",string(encryptCode)) decryptCode:=AESDecrypt(encryptCode,[]byte(key)) fmt.Println("解密:",string(decryptCode)) }
CBC模式
package main import( "bytes" "crypto/aes" "fmt" "crypto/cipher" "encoding/base64" ) func main() { orig := "hello world" key := "0123456789012345" fmt.Println("原文:", orig) encryptCode := AesEncrypt(orig, key) fmt.Println("密文:" , encryptCode) decryptCode := AesDecrypt(encryptCode, key) fmt.Println("解密结果:", decryptCode) } func AesEncrypt(orig string, key string) string { // 转成字节数组 origData := []byte(orig) k := []byte(key) // 分组秘钥 // NewCipher该函数限制了输入k的长度必须为16, 24或者32 block, _ := aes.NewCipher(k) // 获取秘钥块的长度 blockSize := block.BlockSize() // 补全码 origData = PKCS7Padding(origData, blockSize) // 加密模式 blockMode := cipher.NewCBCEncrypter(block, k[:blockSize]) // 创建数组 cryted := make([]byte, len(origData)) // 加密 blockMode.CryptBlocks(cryted, origData) return base64.StdEncoding.EncodeToString(cryted) } func AesDecrypt(cryted string, key string) string { // 转成字节数组 crytedByte, _ := base64.StdEncoding.DecodeString(cryted) k := []byte(key) // 分组秘钥 block, _ := aes.NewCipher(k) // 获取秘钥块的长度 blockSize := block.BlockSize() // 加密模式 blockMode := cipher.NewCBCDecrypter(block, k[:blockSize]) // 创建数组 orig := make([]byte, len(crytedByte)) // 解密 blockMode.CryptBlocks(orig, crytedByte) // 去补全码 orig = PKCS7UnPadding(orig) return string(orig) } //补码 //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。 func PKCS7Padding(ciphertext []byte, blocksize int) []byte { padding := blocksize - len(ciphertext)%blocksize padtext := bytes.Repeat([]byte{byte(padding)}, padding) return append(ciphertext, padtext...) } //去码 func PKCS7UnPadding(origData []byte) []byte { length := len(origData) unpadding := int(origData[length-1]) return origData[:(length - unpadding)] }
CRT模式
package main import ( "bytes" "crypto/aes" "crypto/cipher" "fmt" ) //加密 func aesCtrCrypt(plainText []byte, key []byte) ([]byte, error) { //1. 创建cipher.Block接口 block, err := aes.NewCipher(key) if err != nil { return nil, err } //2. 创建分组模式,在crypto/cipher包中 iv := bytes.Repeat([]byte("1"), block.BlockSize()) stream := cipher.NewCTR(block, iv) //3. 加密 dst := make([]byte, len(plainText)) stream.XORKeyStream(dst, plainText) return dst, nil } func main() { source:="hello world" fmt.Println("原字符:",source) key:="1443flfsaWfdasds" encryptCode,_:=aesCtrCrypt([]byte(source),[]byte(key)) fmt.Println("密文:",string(encryptCode)) decryptCode,_:=aesCtrCrypt(encryptCode,[]byte(key)) fmt.Println("解密:",string(decryptCode)) } CFB模式 package main import ( "crypto/aes" "crypto/cipher" "crypto/rand" "encoding/hex" "fmt" "io" ) func AesEncryptCFB(origData []byte, key []byte) (encrypted []byte) { block, err := aes.NewCipher(key) if err != nil { //panic(err) } encrypted = make([]byte, aes.BlockSize+len(origData)) iv := encrypted[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { //panic(err) } stream := cipher.NewCFBEncrypter(block, iv) stream.XORKeyStream(encrypted[aes.BlockSize:], origData) return encrypted } func AesDecryptCFB(encrypted []byte, key []byte) (decrypted []byte) { block, _ := aes.NewCipher(key) if len(encrypted) < aes.BlockSize { panic("ciphertext too short") } iv := encrypted[:aes.BlockSize] encryptedencrypted = encrypted[aes.BlockSize:] stream := cipher.NewCFBDecrypter(block, iv) stream.XORKeyStream(encrypted, encrypted) return encrypted } func main() { source:="hello world" fmt.Println("原字符:",source) key:="ABCDEFGHIJKLMNO1"//16位 encryptCode:=AesEncryptCFB([]byte(source),[]byte(key)) fmt.Println("密文:",hex.EncodeToString(encryptCode)) decryptCode:=AesDecryptCFB(encryptCode,[]byte(key)) fmt.Println("解密:",string(decryptCode)) }
OFB模式
package main import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/rand" "encoding/hex" "fmt" "io" ) func aesEncryptOFB( data[]byte,key []byte) ([]byte, error) { data = PKCS7Padding(data, aes.BlockSize) block, _ := aes.NewCipher([]byte(key)) out := make([]byte, aes.BlockSize + len(data)) iv := out[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { return nil, err } stream := cipher.NewOFB(block, iv) stream.XORKeyStream(out[aes.BlockSize:], data) return out, nil } func aesDecryptOFB( data[]byte,key []byte) ([]byte, error) { block, _ := aes.NewCipher([]byte(key)) iv := data[:aes.BlockSize] datadata = data[aes.BlockSize:] if len(data) % aes.BlockSize != 0 { return nil, fmt.Errorf("data is not a multiple of the block size") } out := make([]byte, len(data)) mode := cipher.NewOFB(block, iv) mode.XORKeyStream(out, data) out= PKCS7UnPadding(out) return out, nil } //补码 //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。 func PKCS7Padding(ciphertext []byte, blocksize int) []byte { padding := blocksize - len(ciphertext)%blocksize padtext := bytes.Repeat([]byte{byte(padding)}, padding) return append(ciphertext, padtext...) } //去码 func PKCS7UnPadding(origData []byte) []byte { length := len(origData) unpadding := int(origData[length-1]) return origData[:(length - unpadding)] } func main() { source:="hello world" fmt.Println("原字符:",source) key:="1111111111111111"//16位 32位均可 encryptCode,_:=aesEncryptOFB([]byte(source),[]byte(key)) fmt.Println("密文:",hex.EncodeToString(encryptCode)) decryptCode,_:=aesDecryptOFB(encryptCode,[]byte(key)) fmt.Println("解密:",string(decryptCode)) }
RSA加密
首先使用openssl生成公私钥
package main import ( "crypto/rand" "crypto/rsa" "crypto/x509" "encoding/base64" "encoding/pem" "errors" "fmt" ) // 私钥生成 //openssl genrsa -out rsa_private_key.pem 1024 var privateKey = []byte(` -----BEGIN RSA PRIVATE KEY----- MIICWwIBAAKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bM h0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPaco qDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQAB AoGAeWAZvz1HZExca5k/hpbeqV+0+VtobMgwMs96+U53BpO/VRzl8Cu3CpNyb7HY 64L9YQ+J5QgpPhqkgIO0dMu/0RIXsmhvr2gcxmKObcqT3JQ6S4rjHTln49I2sYTz 7JEH4TcplKjSjHyq5MhHfA+CV2/AB2BO6G8limu7SheXuvECQQDwOpZrZDeTOOBk z1vercawd+J9ll/FZYttnrWYTI1sSF1sNfZ7dUXPyYPQFZ0LQ1bhZGmWBZ6a6wd9 R+PKlmJvAkEA6o32c/WEXxW2zeh28sOO4wqUiBYq3L3hFObhcsUAY8jfykQefW8q yPuuL02jLIajFWd0itjvIrzWnVmoUuXydwJAXGLrvllIVkIlah+lATprkypH3Gyc YFnxCTNkOzIVoXMjGp6WMFylgIfLPZdSUiaPnxby1FNM7987fh7Lp/m12QJAK9iL 2JNtwkSR3p305oOuAz0oFORn8MnB+KFMRaMT9pNHWk0vke0lB1sc7ZTKyvkEJW0o eQgic9DvIYzwDUcU8wJAIkKROzuzLi9AvLnLUrSdI6998lmeYO9x7pwZPukz3era zncjRK3pbVkv0KrKfczuJiRlZ7dUzVO0b6QJr8TRAA== -----END RSA PRIVATE KEY----- `) // 公钥: 根据私钥生成 //openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem var publicKey = []byte(` -----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDcGsUIIAINHfRTdMmgGwLrjzfM NSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdT nCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Z y682X1+R1lRK8D+vmQIDAQAB -----END PUBLIC KEY----- `) // 加密 func RsaEncrypt(origData []byte) ([]byte, error) { //解密pem格式的公钥 block, _ := pem.Decode(publicKey) if block == nil { return nil, errors.New("public key error") } // 解析公钥 pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes) if err != nil { return nil, err } // 类型断言 pub := pubInterface.(*rsa.PublicKey) //加密 return rsa.EncryptPKCS1v15(rand.Reader, pub, origData) } // 解密 func RsaDecrypt(ciphertext []byte) ([]byte, error) { //解密 block, _ := pem.Decode(privateKey) if block == nil { return nil, errors.New("private key error!") } //解析PKCS1格式的私钥 priv, err := x509.ParsePKCS1PrivateKey(block.Bytes) if err != nil { return nil, err } // 解密 return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext) } func main() { data, _ := RsaEncrypt([]byte("hello world")) fmt.Println(base64.StdEncoding.EncodeToString(data)) origData, _ := RsaDecrypt(data) fmt.Println(string(origData)) }
感谢各位的阅读,以上就是“有哪些Go加密解密算法”的内容了,经过本文的学习后,相信大家对有哪些Go加密解密算法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!