重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

PyTorchreduction的作用是什么

这篇文章主要讲解了“PyTorch reduction的作用是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PyTorch reduction的作用是什么”吧!

成都创新互联是一家专注于成都网站制作、网站建设与策划设计,蠡县网站建设哪家好?成都创新互联做网站,专注于网站建设十年,网设计领域的专业建站公司;建站业务涵盖:蠡县等地区。蠡县做网站价格咨询:18980820575

损失函数的reduction有三种模式,它们的作用分别是什么?

当inputs和target及weight分别如以下参数时,reduction=’mean’模式时,loss是如何计算得到的?

inputs = torch.tensor([[1, 2], [1, 3], [1, 3]], dtype=torch.float)

target = torch.tensor([0, 1, 1], dtype=torch.long)

weights = torch.tensor([1, 2]

加权交叉熵 Loss

import torch
import torch.nn as nn


inputs = torch.tensor([[1, 2], [1, 3], [1, 3]], dtype=torch.float)
target = torch.tensor([0, 1, 1], dtype=torch.long)
# def loss function
weights = torch.tensor([1, 200], dtype=torch.float)

loss_f_none_w = nn.CrossEntropyLoss(weight=weights, reduction='none')
loss_f_sum = nn.CrossEntropyLoss(weight=weights, reduction='sum')
loss_f_mean = nn.CrossEntropyLoss(weight=weights, reduction='mean')

# forward
loss_none_w = loss_f_none_w(inputs, target)
loss_sum = loss_f_sum(inputs, target)
loss_mean = loss_f_mean(inputs, target)

# view
print("\nweights: ", weights)
print(loss_none_w, loss_sum, loss_mean)

感谢各位的阅读,以上就是“PyTorch reduction的作用是什么”的内容了,经过本文的学习后,相信大家对PyTorch reduction的作用是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


本文名称:PyTorchreduction的作用是什么
当前URL:http://cqcxhl.com/article/jdhgdd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP