重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了caffe如何安装,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
成都创新互联公司是一家以重庆网站建设、网页设计、品牌设计、软件运维、成都网站推广、小程序App开发等移动开发为一体互联网公司。已累计为成都塔吊租赁等众行业中小客户提供优质的互联网建站和软件开发服务。
win10
visual studio 2015
CUDA10.0(caffe官方给出的是CUDA8.0,但是据说只有10.0版本才支持RTX2070、2080、2080Ti)
cudnn 在官网下载与CUDA10.0对应的版本
python3.5-anaconda
caffe官方要求的其他工具
安装CUDA工具,最好是把系统上其他版本的CUDA删除掉,到官网下载CUDA10.0以及对应版本的cudnn;
python必须选择3.5版本,官网FAQ里有链接可以下载默认python3.5的安装包;
anaconda安装其他工具时,如果网速较慢,可以使用国内的开源镜像站,如清华大学开源镜像站;
:: Default values if DEFINED APPVEYOR ( echo Setting Appveyor defaults if NOT DEFINED MSVC_VERSION set MSVC_VERSION=14 if NOT DEFINED WITH_NINJA set WITH_NINJA=0 if NOT DEFINED CPU_ONLY set CPU_ONLY=0 if NOT DEFINED CUDA_ARCH_NAME set CUDA_ARCH_NAME=Auto if NOT DEFINED CMAKE_CONFIG set CMAKE_CONFIG=Release if NOT DEFINED USE_NCCL set USE_NCCL=0 if NOT DEFINED CMAKE_BUILD_SHARED_LIBS set CMAKE_BUILD_SHARED_LIBS=0 if NOT DEFINED PYTHON_VERSION set PYTHON_VERSION=3 if NOT DEFINED BUILD_PYTHON set BUILD_PYTHON=1 if NOT DEFINED BUILD_PYTHON_LAYER set BUILD_PYTHON_LAYER=1 if NOT DEFINED BUILD_MATLAB set BUILD_MATLAB=0 if NOT DEFINED PYTHON_EXE set PYTHON_EXE=python if NOT DEFINED RUN_TESTS set RUN_TESTS=1 if NOT DEFINED RUN_LINT set RUN_LINT=1 if NOT DEFINED RUN_INSTALL set RUN_INSTALL=1 :: Set python 2.7 with conda as the default python if !PYTHON_VERSION! EQU 2 ( set CONDA_ROOT=C:\Miniconda-x64 ) :: Set python 3.5 with conda as the default python if !PYTHON_VERSION! EQU 3 ( set CONDA_ROOT=C:\anaconda ) set PATH=!CONDA_ROOT!;!CONDA_ROOT!\Scripts;!CONDA_ROOT!\Library\bin;!PATH! :: Check that we have the right python version !PYTHON_EXE! --version :: Add the required channels conda config --add channels conda-forge conda config --add channels willyd :: Update conda conda update conda -y :: Download other required packages conda install --yes cmake ninja numpy scipy protobuf==3.1.0 six scikit-image pyyaml pydotplus graphviz if ERRORLEVEL 1 ( echo ERROR: Conda update or install failed exit /b 1 ) :: Install cuda and disable tests if needed if !WITH_CUDA! == 1 ( call %~dp0\appveyor\appveyor_install_cuda.cmd set CPU_ONLY=0 set RUN_TESTS=0 set USE_NCCL=1 ) else ( set CPU_ONLY=1 ) :: Disable the tests in debug config if "%CMAKE_CONFIG%" == "Debug" ( echo Disabling tests on appveyor with config == %CMAKE_CONFIG% set RUN_TESTS=0 ) :: Disable linting with python 3 until we find why the script fails if !PYTHON_VERSION! EQU 3 ( set RUN_LINT=0 ) ) else ( :: Change the settings here to match your setup :: Change MSVC_VERSION to 12 to use VS 2013 if NOT DEFINED MSVC_VERSION set MSVC_VERSION=14 :: Change to 1 to use Ninja generator (builds much faster) if NOT DEFINED WITH_NINJA set WITH_NINJA=0 :: Change to 1 to build caffe without CUDA support if NOT DEFINED CPU_ONLY set CPU_ONLY=0 :: Change to generate CUDA code for one of the following GPU architectures :: [Fermi Kepler Maxwell Pascal All] if NOT DEFINED CUDA_ARCH_NAME set CUDA_ARCH_NAME=Auto :: Change to Debug to build Debug. This is only relevant for the Ninja generator the Visual Studio generator will generate both Debug and Release configs if NOT DEFINED CMAKE_CONFIG set CMAKE_CONFIG=Release :: Set to 1 to use NCCL if NOT DEFINED USE_NCCL set USE_NCCL=0 :: Change to 1 to build a caffe.dll if NOT DEFINED CMAKE_BUILD_SHARED_LIBS set CMAKE_BUILD_SHARED_LIBS=0 :: Change to 3 if using python 3.5 (only 2.7 and 3.5 are supported) if NOT DEFINED PYTHON_VERSION set PYTHON_VERSION=3 :: Change these options for your needs. if NOT DEFINED BUILD_PYTHON set BUILD_PYTHON=1 if NOT DEFINED BUILD_PYTHON_LAYER set BUILD_PYTHON_LAYER=1 if NOT DEFINED BUILD_MATLAB set BUILD_MATLAB=0 :: If python is on your path leave this alone if NOT DEFINED PYTHON_EXE set PYTHON_EXE=python :: Run the tests if NOT DEFINED RUN_TESTS set RUN_TESTS=0 :: Run lint if NOT DEFINED RUN_LINT set RUN_LINT=0 :: Build the install target if NOT DEFINED RUN_INSTALL set RUN_INSTALL=0 )
以上代码主要修改CPU_ONLY
, WITH_NINJA
, PYTHON_VERSION
,CONDA_ROOT
, 等变量;
cmake -G"!CMAKE_GENERATOR!" ^ -DBLAS=Open ^ -DCMAKE_BUILD_TYPE:STRING=%CMAKE_CONFIG% ^ -DBUILD_SHARED_LIBS:BOOL=%CMAKE_BUILD_SHARED_LIBS% ^ -DBUILD_python:BOOL=%BUILD_PYTHON% ^ -DBUILD_python_layer:BOOL=%BUILD_PYTHON_LAYER% ^ -DBUILD_matlab:BOOL=%BUILD_MATLAB% ^ -DCPU_ONLY:BOOL=%CPU_ONLY% ^ -DCOPY_PREREQUISITES:BOOL=1 ^ -DINSTALL_PREREQUISITES:BOOL=1 ^ -DUSE_NCCL:BOOL=!USE_NCCL! ^ -DCUDA_ARCH_NAME:STRING=%CUDA_ARCH_NAME% ^ -DCUDNN_ROOT=C:\Program Files\NVIDIA GPU Computing Toolkit\cudnn-10.0\cuda ^ "%~dp0\.."
以上代码主要添加一个变量CUDNN_ROOT
;
cmake/cuda.cmake
set(Caffe_known_gpu_archs "30 35 50 60 61 75")
set(__nvcc_out "7.5") # string(REGEX MATCH "([1-9].[0-9])" __nvcc_out "${__nvcc_out}") # string(REPLACE "2.1" "2.1(2.0)" __nvcc_out "${__nvcc_out}") set(CUDA_gpu_detect_output ${__nvcc_out} CACHE INTERNAL "Returned GPU architetures from caffe_detect_gpus tool" FORCE)
主要是添加了一行,注释了2行;
C:\Users\ducks\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\include\boost-1_61\boost\config\compiler\nvcc.hpp
// #if !defined(__CUDACC_VER__) || (__CUDACC_VER__ < 70500) // # define BOOST_NO_CXX11_VARIADIC_TEMPLATES // #endif
删除caffe目录里面的build
目录,如果之前编译失败了,必须执行这一步。
在caffe目录执行script\build_win.cmd
感谢你能够认真阅读完这篇文章,希望小编分享的“caffe如何安装”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!