重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

pythonre模块

python 中的re模块

re 模块为Python的内置模块,Python程序中通过这个模块来使用正则表达式。

目前创新互联已为上1000家的企业提供了网站建设、域名、网站空间、网站托管维护、企业网站设计、桐梓网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

re 模块的使用

re 模块有两种使用方式,示例中以match方法为例。

方式 1:

步骤:
1)直接使用 re.match 方法(传入正则表达式和需要匹配的字符串)对文本进行匹配查找,match方法返回一个 Match 对象
2)使用 Match 对象提供的方法获取匹配结果

示例:

import re

m = re.match(r'\d+', '123abc456')    # 返回一个 Match 对象
print(m.group())                     # 输出匹配结果:123

方式 2:

步骤:
1)使用 re.compile 方法(传入正则表达式)得到 Pattern 对象
2)通过 Pattern 对象提供的方法对字符串进行匹配查找,返回一个 Match 对象(包含了匹配结果)
3)使用 Match 对象提供的方法获取匹配结果

示例:

import re

pattern = re.compile(r'\d+')            # 返回一个 Pattern 对象
m = pattern.match('123abc456')       # 返回一个 Match 对象
print(m.group())                               # 输出匹配结果:123

如上2种方式的区别在于,第二种方式通过 re.compile 方法获取一个 Pattern 对象,使得一个正则表达式被多次用于匹配;而第一种方式,每一次的匹配都需要传入正则表达式。

compile方法

re.compile(pattern[, flag])

示例中的 compile 方法用于编译正则表达式,返回一个 Pattern 对象,可利用 Pattern 对象中的一系列方法对字符串进行匹配查找。Pattern 对象中的常用方法包括:match,search,findall,finditer,split,sub,subn。当然这些方法也可以使用 re模块直接调用~

match方法

match 方法用于从字符串的头部开始匹配,仅返回第一个匹配的结果~

pattern.match(string[, pos[, endpos]])
或
re.match(pattern, string[, flags])

pattern.match(string[, pos[, endpos]]) 中的 pos,endpos指定字符串匹配的起始和终止位置,这两个均为可选参数,若不指定,默认从字符串的开头开始匹配~
 
re.match(pattern, string[, flags]) 中的pattern为传入的正则表达式,flags指定匹配模式,如忽略大小写,多行模式,同compile方法中的flag参数~
 

分组匹配

可以通过在正则表达式中使用小括号'()',来对匹配到的数据进行分组,然后通过group([n]),groups()获取对应的分组数据。

import re

pattern = re.compile('([0-9]*)([a-z]*)([0-9]*)')
m = pattern.match('123abc456')

# 输出匹配的完整字符串
print(m.group())        # 123abc456

# 同上,输出匹配的完整字符串
print(m.group(0))       # 123abc456

# 从匹配的字符串中获取第一个分组
print(m.group(1))       # 123

# 从匹配的字符串中获取第二个分组
print(m.group(2))       # abc

# 从匹配的字符串中获取第三个分组
print(m.group(3))       # 456

# 从匹配的字符串中获取所有分组,返回为元组
print(m.groups())       # ('123', 'abc', '456')

# 获取第二个分组 在字符串中的起始位置(分组第一个字符的索引),start方法的默认参数为0,即字符串的起始索引
print(m.start(2))       # 3

# 获取第二个分组 在字符串中的起始位置(分组最后一个字符的索引+1),通start方法,end方法的默认参数也为0,即字符串结尾的索引+1
print(m.end(2))        # 6

# 第三个分组的起始和结束位置,即 (start(3), end(3))
print(m.span(3))     # (6, 9)

# 同 (start(), end())
print(m.span())      # (0, 9)

上述中的 group(),groups(),start(),end(),span() 方法均为 Match类中的方法,这些方法主要用于从匹配的字符串中(或者说是从 Match对象中)获取相关信息~

re 模块下的常用方法

re 模块中较为常用的方法除了 compile() 和 match() 方法,还有下面列出的这些~

search 方法

不同于match方法的从头开始匹配,search方法用于在字符串中的进行查找(从左向右进行查找),只要找到一个匹配结果,就返回 Match 对象,若没有则返回None~

search(string[, pos[, endpos]])

# 可选参数 pos,endpos 用于指定查找的起始位置和结束位置,默认 pos 为0,endpos为字符串长度

示例:re.search

import re

pattern = re.compile(r'[a-z]+')
m = pattern.match('123abc456cde')
print(m)               # None

m =  pattern.search('123abc456cde')  # 或者 m = re.search(r'[a-z]+', '123abc456')
print(m.group())   # abc

由于match是从头开始匹配,所以这里匹配不到结果~

findall 方法

match方法 和search方法 仅会返回一个结果,findall方法会将字符串中的所有匹配结果以列表的形式返回,注意,返回的是列表,不是 Match 对象~

findall(string[, pos[, endpos]])

# 可选参数 pos,endpos 用于指定查找的起始位置和结束位置,默认 pos 为0,endpos为字符串长度

示例:

import re

pattern = re.compile(r'[a-z]+')
res = pattern.findall('123abc456cde')
print(res)

# 执行结果:
['abc', 'cde']

findall方法的优先级查询,findall方法会优先把匹配结果组里的内容进行返回,来看如下示例:

import re

pattern = re.compile('\d([a-z]+)\d')
print(pattern.findall('123abc456'))

# 输出结果:
['abc']

 
其实我们想要的结果是 '3abc4',但是findall方法会优先返回分组中的内容,即 'abc'。若要想要匹配结果,取消权限即可,就是在小括号的起始位置加上 '?:'

import re

pattern = re.compile('\d(?:[a-z]+)\d')
print(pattern.findall('123abc456'))

# 输出结果:
['3abc4']

finditer 方法

finditer 方法与 findall方法类似,会查找整个字符串并返回所有匹配的结果,返回的是一个迭代器,且每一个元素为 Match 对象~

import re

pattern = re.compile(r'\d+')
res = pattern.finditer('#123abc456cde')
for i in res:
    print(i.group())

# 输出结果:
123
456

split 方法

split方法用于将字符串进行切割,切割使用的分隔符就是字符串中被匹配到的子串,将被切割后的子串以列表的形式返回~

split(string[, maxsplit])

# maxsplit 参数用于指定最大分割次数,默认会将这个字符串分割

示例:

import re

pattern = re.compile(r'\d+') 
m = pattern.split('abc23de3fgh4456ij')   # 或者直接 re.split('\d+','abc23de3fgh4ij')
print(m)

# 结果输出:
['abc', 'de', 'fgh', 'ij']

正则表达式中添加括号后,则会保留分隔符

import re

ret = re.split("(\d+)", "abc23de3fgh4456ij")
print(ret)

# 结果输出”
['abc', '23', 'de', '3', 'fgh', '3456', 'ij']

sub 方法

sub方法用于将字符串中匹配的子串替换为指定的字符串

pattern.sub(repl, string[, count])
或者
re.sub(pattern, repl, string[, count])

count为可选参数,指定最大替换次数,repl 可以是一个字符串,也可以是一个 \id 引用匹配到的分组(但不能使用 \0),还可以是一个方法,该方法仅接受一个参数(Match对象),且返回一个字符串~

1)repl 是一个字符串

import re

ret = re.sub(r'\d+', '###', 'abc123cde')
print(ret)

# 输出结果:
abc###cde

2)repl 是一个分组引用
将类似于 'hello world' 这样的字符串前后两个单词替换~

import re

ret = re.sub(r'(\w+) (\w+)', r'\2 \1', 'hello world; hello kitty')
print(ret)

# 输出结果:
world hello; kitty hello

3)repl是一个方法

import re

def func(m):
    return 'hi' + ' ' + m.group(2)

ret = re.sub(r'(\w+) (\w+)', func, 'hello world; hello kitty')
print(ret)

# 输出结果:
hi world; hi kitty

subn方法

subn方法和sub方法类似,subn方法会返回一个元组,元组有两个元素,第一个元素与sub方法返回的结果一致,第二个元素为字符串中被替换的子串个数

import re

def func(m):
    return 'hi' + ' ' + m.group(2)

ret = re.subn(r'\d+', '###', 'abc123cde')
print(ret)

ret = re.subn(r'(\w+) (\w+)', r'\2 \1', 'hello world; hello kitty')
print(ret)

ret = re.subn(r'(\w+) (\w+)', func, 'hello world; hello kitty')
print(ret)

# 输出结果:
('abc###cde', 1)
('world hello; kitty hello', 2)
('hi world; hi kitty', 2)

贪婪匹配 和 非贪婪匹配

正则匹配默认使用的就是贪婪匹配,也就是尽可能的多匹配,如下示例为贪婪匹配:

import re

m = re.match('[a-z]+', 'abc123def')
print(m.group())

# 输出结果:
abc

同一示例使用非贪婪匹配,在正则后面加上一个 '?' 即可,注意这个问号不是代表0个或者一个(注意区分):

import re

m = re.match('[a-z]+?', 'abc123def')
print(m.group())

# 输出结果:
a

 
贪婪匹配(单单使用 ?),?重复0个或者1个,贪婪模式下匹配一个

ret=re.findall('13\d?','1312312312, 134, 34234, 2313')
print(ret)   

# 输出结果:
['131', '134', '13']

 
惰性匹配示例:

ret=re.findall('131\d+?','1312312312')
print(ret)   
# 输出结果:
['1312']

正则表达式补充

转义符 \

1、反斜杠后边跟元字符去除特殊功能, 比如.
2、反斜杠后边跟普通字符实现特殊功能, 比如\d

\d  匹配任何十进制数;      它相当于类 [0-9]。
\D  匹配任何非数字字符;    它相当于类 [^0-9]。
\s  匹配任何空白字符;      它相当于类 [ \t\n\r\f\v]。
\S  匹配任何非空白字符;    它相当于类 [^ \t\n\r\f\v]。
\w  匹配任何字母数字字符;   它相当于类 [a-zA-Z0-9_]。
\W  匹配任何非字母数字字符; 它相当于类 [^a-zA-Z0-9_]
\b  匹配一个特殊字符边界,比如空格 ,&,#等

 
让我们看一下 \b 的应用:

ret=re.findall(r'I\b','I am LIST')
print(ret)    # ['I']

 
Tip:
如上示例中 ret=re.findall(r'I\b','I am LIST') 使用的是 r'I\b' 而不能使用 'I\b' ,解释如下:
Python程序在这里的执行过程分为2步:

第一步:python 解释器读取 'I\b' 字符串进行解析,解析完成后传递给 re 模块
第二步:re 模块 对接收到的字符串进行解析

 
在第一步中,'\b' 和 '\n' 类似,对于Python解释器而言,有特殊的意义,Python解释器针对 '\b' 和 '\n' 会根据ASCII码表进行翻译,翻译完成之后再传递给 re 模块进行后续的处理;所以 re 模块获取到的不会是 原模原样的 'I\b'。这里若要让 re 模块接收到原模原样的 'I\b',有两种方式:

1)在字符串中使用 \ ,将 \b 转义
    re.findall('I\\b','I am LIST')
2)直接在字符串前面加 r,使字符串中的 \b 失效,建议使用这种方式
    re.findall(r'I\b','I am LIST')

 
还有一种情况,要匹配的字符串本身就包含 '\' , 例如匹配 'hello\kitty' 中的 'o\k'
分析:\ 对于re 模块而言,有转义的意思,所以 re 模块希望获取到的字符串规则是 'o\k',也就是说Python解释器解析完字符串后传递给 re 模块的是 'o\k'(如果直接使用 re.findall('o\k','hello\kitty') ,re模块获取到的是 'o\k'),所以这里也有两种实现方式:

1)re.findall(r'o\\k','hello\kitty') ,建议使用这种方式
2)针对2个 \ 分别进行转义
     re.findall('o\\\\k','hello\kitty')

也许这里会有疑问,re.findall("1\d?", "123,12345235,124234,1,abc,13") ,为何这里的\d 可以直接使用,那是因为 \d 在ASCII码表里面没有对应的字符串(Python解释器对 \d 不会进行翻译),所以可以直接使用。ASCII码表中和 '\' 连用的特殊字符见下图:
python re模块
 

元字符之|

|表示 或者,使用 | 时一般需要和 括号配合使用,不然无法区分 | 的左边与右边

import re

ret = re.search('(ab)|\d','#@123abc')    # 匹配 ab 或者 数字,search仅会返回第一个匹配到的
print(ret.group())     # 1

字符集[]的是使用

import re

# [bc] 表示仅匹配 b 或者 c,如下示例中表示,匹配 abd 或者 acd 
ret = re.findall('a[bc]d','acd') 
print(ret)   #['acd']

# [a-zA-Z] : 所有大小写字母
# [a-zA-Z0-9] : 所有大小写字母及数字
# [a-zA-Z0-9_] : 所有大小写字母及数字,再加上一个下划线

ret = re.findall('[a-z]','acd')    # 匹配所有小写字母
print(ret)   #['a', 'c', 'd']

# 注意:元字符在 字符集[] 中没有任何效果,这里的 . 和 + 就是普通的符号,有效果的元字符包括:- ^ \
ret = re.findall('[.*+]','a.cd+')    
print(ret)   #['.', '+']

# - 表示范围符号
ret = re.findall('[1-9]','45dha3')    # 匹配数字 1 至 9
print(ret)   #['4', '5', '3']

 # ^ 表示取反,即匹配 非a,非b的字符
ret = re.findall('[^ab]','45bdha3')   
print(ret)   #['4', '5', 'd', 'h', '3']

# \ 为转义符
ret = re.findall('[\d]','45bdha3')     
print(ret)   #['4', '5', '3']

.................^_^


标题名称:pythonre模块
本文路径:http://cqcxhl.com/article/jggidd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP