重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

如何优化Mongodb数据库

这篇文章将为大家详细讲解有关如何优化MongoDB 数据库,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

做网站、网站制作介绍好的网站是理念、设计和技术的结合。创新互联公司拥有的网站设计理念、多方位的设计风格、经验丰富的设计团队。提供PC端+手机端网站建设,用营销思维进行网站设计、采用先进技术开源代码、注重用户体验与SEO基础,将技术与创意整合到网站之中,以契合客户的方式做到创意性的视觉化效果。

数据库设计优化

在项目设计阶段,明确集合的用途是对性能调优非常重要的一步。

从性能优化的角度来看,集合的设计我们需要考虑的是集合中数据的常用操作,例如我们需要设计一个日志(log)集合,日志的查看频率不高,但写入频率却很高,那么我们就可以得到这个集合中常用的操作是更新(增删改)。如果我们要保存的是城市列表呢?显而易见,这个集合是一个查看频率很高,但写入频率很低的集合,那么常用的操作就是查询。

对于频繁更新和频繁查询的集合,我们最需要关注的重点是他们的范式化程度,假设现在我们需要存储一篇图书及其作者,在MongoDB中的关联就可以体现为以下几种形式:

1.完全分离(范式化设计)

示例1:

View Code
{
     "_id" : ObjectId("5124b5d86041c7dca81917"),
     "title" : "如何使用MongoDB", 
      "author" : [ 
               ObjectId("144b5d83041c7dca84416"),
              ObjectId("144b5d83041c7dca84418"),
              ObjectId("144b5d83041c7dca84420"),
     ]
 }

我们将作者(comment) 的id数组作为一个字段添加到了图书中去。这样的设计方式是在非关系型数据库中常用的,也就是我们所说的范式化设计。在MongoDB中我们将与主键没有直接关系的图书单独提取到另一个集合,用存储主键的方式进行关联查询。当我们要查询文章和评论时需要先查询到所需的文章,再从文章中获取评论id,最后用获得的完整的文章及其评论。在这种情况下查询性能显然是不理想的。但当某位作者的信息需要修改时,范式化的维护优势就凸显出来了,我们无需考虑此作者关联的图书,直接进行修改此作者的字段即可。

2.完全内嵌(反范式化设计)

示例2:

View Code
{
       "_id" : ObjectId("5124b5d86041c7dca81917"),
       "title" : "如何使用MongoDB",
       "author" : [
                {
                         "name" : "丁磊"
                         "age" : 40,
                         "nationality" : "china",
                },
                {
                         "name" : "马云"
                         "age" : 49,
                         "nationality" : "china",
                },
                {
                         "name" : "张召忠"
                         "age" : 59,
                         "nationality" : "china",
                },
      ]
  }

在这个示例中我们将作者的字段完全嵌入到了图书中去,在查询的时候直接查询图书即可获得所对应作者的全部信息,但因一个作者可能有多本著作,当修改某位作者的信息时时,我们需要遍历所有图书以找到该作者,将其修改。

3.部分内嵌(折中方案)

示例3:

View Code
{
       "_id" : ObjectId("5124b5d86041c7dca81917"),
       "title" : "如何使用MongoDB",
       "author" : [ 
               {
                         "_id" : ObjectId("144b5d83041c7dca84416"),
                         "name" : "丁磊"
                },
                {
                         "_id" : ObjectId("144b5d83041c7dca84418"),
                         "name" : "马云"
                },
                {
                         "_id" : ObjectId("144b5d83041c7dca84420"),
                         "name" : "张召忠"
                },
      ]
  }

这次我们将作者字段中的最常用的一部分提取出来。当我们只需要获得图书和作者名时,无需再次进入作者集合进行查询,仅在图书集合查询即可获得。

这种方式是一种相对折中的方式,既保证了查询效率,也保证的更新效率。但这样的方式显然要比前两种较难以掌握,难点在于需要与实际业务进行结合来寻找合适的提取字段。如同示例3所述,名字显然不是一个经常修改的字段,这样的字段如果提取出来是没问题的,但如果提取出来的字段是一个经常修改的字段(比如age)的话,我们依旧在更新这个字段时需要大范围的寻找并依此进行更新。

关于如何优化Mongodb 数据库就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


当前标题:如何优化Mongodb数据库
标题网址:http://cqcxhl.com/article/jiiesi.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP