重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

hadoop中mapreduce的常用类(二)

云智慧(北京)科技有限公司陈鑫

创新互联自成立以来,一直致力于为企业提供从网站策划、网站设计、网站建设、网站设计、电子商务、网站推广、网站优化到为企业提供个性化软件开发等基于互联网的全面整合营销服务。公司拥有丰富的网站建设和互联网应用系统开发管理经验、成熟的应用系统解决方案、优秀的网站开发工程师团队及专业的网站设计师团队。

NullWritable 

不想输出的时候,把它当做key。NullWritable是Writable的一个特殊类,序列化的长度为0,实现方法为空实现,不从数据流中读数据,也不写入数据,只充当占位符,如在MapReduce中,如果你不需要使用键或值,你就可以将键或值声明为NullWritable,NullWritable是一个不可变的单实例类型。

 

FileInputFormat继承于InputFormat

InputFormat的作用:

验证输入规范;
切分输入文件为InputSpilts;
提供RecordReader来收集InputSplit中的输入记录,给Mapper进行执行。

RecordReader
将面向字节的InputSplit转换为面向记录的视图,供Mapper或者Reducer使用运行。因此假定处理记录的责任界限,为任务呈现key-value。

SequenceFile:

SequenceFile是包含二进制kv的扁平文件(序列化)。它提供Writer、Reader、Sorter来进行写、读、排序功能。基于CompressionType,SequenceFile有三种对于kv的压缩方式:

 Writer:不压缩records;

 RecordCompressWriter:只压缩values;

 BlockCompressWriter:  压缩records,keys和values都被分开压缩在block中,block的大小可以配置;

压缩方式由合适的CompressionCodec指定。推荐使用此类的静态方法createWriter来选择格式。Reader作为桥接可以读取以上任何一种压缩格式。

CompressionCodec:

封装了关于流式压缩/解压缩的相关方法。

Mapper

Mapper将输入的kv对映射成中间数据kv对集合。Maps将输入记录转变为中间记录,其中被转化后的记录不必和输入记录类型相同。一个给定的输入对可以映射为0或者多个输出对。

在MRJob执行过程中,MapReduce框架根据提前指定的InputFormat(输入格式对象)产生InputSplit(输入分片),而每个InputSplit将会由一个map任务处理。
总起来讲,Mapper实现类通过JobConfigurable.configure(JobConf)方法传入JobConf对象来初始化,然后在每个map任务中调用map(WritableComparable,Writable,OutputCollector,Reporter)方法处理InputSplit的每个kv对。MR应用可以覆盖Closeable.close方法去处理一些必须的清理工作。
输出对不一定和输入对类型相同。一个给定的输入对可能映射成0或者很多的输出对。输出对是框架通过调用OutputCollector.colect(WritableComparable,Writable)得到。

MR应用可以使用Reporter汇报进度,设置应用层级的状态信息,更新计数器或者只是显示应用处于运行状态等。

所有和给定的输出key关联的中间数据都会随后被框架分组处理,并传给Reducer处理以产生最终的输出。用户可以通过JobConf.setOutputKeyComparatorClass(Class)指定一个Comparator控制分组处理过程。

Mapper输出都被排序后根据Reducer数量进行分区,分区数量等于reduce任务数量。用户可以通过实现自定义的Partitioner来控制哪些keys(记录)到哪个Reducer中去。

此外,用户还可以指定一个Combiner,调用JobConf.setCombinerClass(Class)来实现。这个可以来对map输出做本地的聚合,有助于减少从mapper到reducer的数据量。

经过排序的中间输出数据通常以一种简单的格式(key-len,key,value-len,value)存储在SequenceFile中。应用可以决定是否或者怎样被压缩以及压缩格式,可以通过JobConf来指定CompressionCodec.

如果job没有reducer,那么mapper的输出结果会不经过分组排序,直接写进FileSystem.

Map数

通常map数由输入数据总大小决定,也就是所有输入文件的blocks数目决定。
每个节点并行的运行的map数正常在10到100个。由于Map任务初始化本身需要一段时间所以map运行时间至少在1分钟为好。

如此,如果有10T的数据文件,每个block大小128M,最大使用为82000map数,除非使用setNumMapTasks(int)(这个方法仅仅对MR框架提供一个建议值)将map数值设置到更高。

Reducer

Reducer根据key将中间数据集合处理合并为更小的数据结果集。
用户可以通过JobConf.setNumReduceTasks(int)设置作业的reducer数目。
整体而言,Reducer实现类通过JobConfigurable.configure(JobConf)方法将JobConf对象传入,并为Job设置和初始化Reducer。MR框架调用 reduce(WritableComparable, Iterator, OutputCollector,Reporter)来处理以key被分组的输入数据。应用可以覆盖Closeable.close()处理必要的清理操作。

Reducer由三个主要阶段组成:shuffle,sort,reduce。

hadoop中mapreduce的常用类(二) shuffle

输入到Reducer的输入数据是Mapper已经排过序的数据.在shuffle阶段,根据partition算法获取相关的mapper地址,并通过Http协议将mapper的相应输出数据由reducer拉取到reducer机器上处理。

hadoop中mapreduce的常用类(二) sort

框架在这个阶段会根据key对reducer的输入进行分组(因为不同的mapper输出的数据中可能含有相同的key)。
shuffle和sort是同时进行的,同时reducer仍然在拉取map的输出。

hadoop中mapreduce的常用类(二) Secondary Sort

如果对中间数据key进行分组的规则和在处理化简阶段前对key分组规则不一致时,可以通过JobConf.setOutputValueGroupingComparator(Class)设置一个Comparator。因为中间数据的分组策略是通过JobConf.setOutputKeyComparatorClass(Class)设置的,可以控制中间数据根据哪些key进行分组。而JobConf.setOutputValueGroupingComparator(Class)则可用于在数据连接情况下对value进行二次排序。

Reduce(化简)

这个阶段框架循环调用 reduce(WritableComparable, Iterator, OutputCollector,Reporter)方法处理被分组的每个kv对。

reduce任务一般通过OutputCollector.collect(WritableComparable, Writable)将输出数据写入文件系统FileSystem。应用可以使用Reporter汇报作业执行进度、设置应用层级的状态信息并更新计数器(Counter),或者只是提示作业在运行。
注意,Reducer的输出不会再进行排序。
Reducer数目

合适的reducer数目可以这样估算:(节点数目mapred.tasktracker.reduce.tasks.maximum)乘以0.95或乘以1.75。因子为0.95时,当所有map任务完成时所有reducer可以立即启动,并开始从map机器上拉取数据。因子为1.75时,最快的一些节点将完成第一轮reduce处理,此时框架开始启动第二轮reduce任务,这样可以达到比较好的作业负载均衡。提高reduce数目会增加框架的运行负担,但有利于提升作业的负载均衡并降低失败的成本。上述的因子使用最好在作业执行时框架仍然有reduce槽为前提,毕竟框架还需要对作业进行可能的推测执行和失败任务的处理。

不使用Reducer
如果不需要进行化简处理,可以将reduce数目设为0。这种情况下,map的输出会直接写入到文件系统。输出路径通过setOutputPath(Path)指定。框架在写入数据到文件系统之前不再对map结果进行排序。

Partitioner

Partitioner对数据按照key进行分区,从而控制map的输出传输到哪个reducer上。默认的Partitioner算法是hash(哈希。分区数目由作业的reducer数目决定。HashPartitioner是默认的Partitioner。

Reporter

Reporter为MR应用提供了进度报告、应用状态信息设置,和计数器(Counter)更新等功能.

Mapper和Reducer实现可以使用Reporter汇报进度或者提示作业在正常运行。在一些场景下,应用在处理一些特殊的kv对时耗费了过多时间,这个可能会因为框架假定任务超时而强制停止了这些作业。为避免该情况,可以设置mapred.task.timeout为一个比较高的值或者将其设置为0以避免超时发生。
应用也可以使用Reporter来更新计数(Counter)。

OutputCollector

OutputCollector是MR框架提供的通用工具来收集Mapper或者Reducer输出数据(中间数据或者最终结果数据)。
HadoopMapReduce提供了一些经常使用的mapper、reducer和partioner的实现类供我们进行学习。

以上有关configuration和job的部分在新的API中有所改变,简单说就是在Mapper和Reducer中引入了MapContext和ReduceContext,它们封装了configuration和outputcollector,以及reporter。

 


分享名称:hadoop中mapreduce的常用类(二)
链接分享:http://cqcxhl.com/article/jijdeo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP