重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

PostgreSQL查询优化中对消除外连接的处理过程是什么

本篇内容介绍了“PostgreSQL查询优化中对消除外连接的处理过程是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

站在用户的角度思考问题,与客户深入沟通,找到方城网站设计与方城网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站建设、成都网站设计、企业官网、英文网站、手机端网站、网站推广、域名与空间、虚拟空间、企业邮箱。业务覆盖方城地区。


使用的测试脚本:

drop table if exists t_null1;
create table t_null1(c1 int);
insert into t_null1 values(1);
insert into t_null1 values(2);
insert into t_null1 values(null);

drop table if exists t_null2;
create table t_null2(c1 int);
insert into t_null2 values(1);
insert into t_null2 values(null);

一、基本概念

消除外连接的代码注释说明如下:

 /*
  * reduce_outer_joins
  *      Attempt to reduce outer joins to plain inner joins.
  *
  * The idea here is that given a query like
  *      SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
  * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
  * is strict.  The strict operator will always return NULL, causing the outer
  * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
  * columns.  Therefore, there's no need for the join to produce null-extended
  * rows in the first place --- which makes it a plain join not an outer join.
  * (This scenario may not be very likely in a query written out by hand, but
  * it's reasonably likely when pushing quals down into complex views.)
  *
  * More generally, an outer join can be reduced in strength if there is a
  * strict qual above it in the qual tree that constrains a Var from the
  * nullable side of the join to be non-null.  (For FULL joins this applies
  * to each side separately.)
  *
  * Another transformation we apply here is to recognize cases like
  *      SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
  * If the join clause is strict for b.y, then only null-extended rows could
  * pass the upper WHERE, and we can conclude that what the query is really
  * specifying is an anti-semijoin.  We change the join type from JOIN_LEFT
  * to JOIN_ANTI.  The IS NULL clause then becomes redundant, and must be
  * removed to prevent bogus selectivity calculations, but we leave it to
  * distribute_qual_to_rels to get rid of such clauses.
  *
  * Also, we get rid of JOIN_RIGHT cases by flipping them around to become
  * JOIN_LEFT.  This saves some code here and in some later planner routines,
  * but the main reason to do it is to not need to invent a JOIN_REVERSE_ANTI
  * join type.
  *
  * To ease recognition of strict qual clauses, we require this routine to be
  * run after expression preprocessing (i.e., qual canonicalization and JOIN
  * alias-var expansion).
  */

有两种类型的外连接可以被消除,第一种是形如以下形式的语句:
SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
这种语句如满足条件可变换为内连接(INNER_JOIN).
之所以可以变换为内连接,那是因为这样的语句与内连接处理的结果是一样的,原因是在Nullable-Side端(需要填充NULL值的一端),存在过滤条件保证这一端不可能是NULL值,比如IS NOT NULL/y = 42这类强(strict)过滤条件.

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1;
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Merge Left Join  (cost=359.57..860.00 rows=32512 width=8) -- 外连接
   Output: a.c1, b.c1
   Merge Cond: (a.c1 = b.c1)
   ->  Sort  (cost=179.78..186.16 rows=2550 width=4)
         Output: a.c1
         Sort Key: a.c1
         ->  Seq Scan on public.t_null1 a  (cost=0.00..35.50 rows=2550 width=4)
               Output: a.c1
   ->  Sort  (cost=179.78..186.16 rows=2550 width=4)
         Output: b.c1
         Sort Key: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..35.50 rows=2550 width=4)
               Output: b.c1
(13 rows)

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1 where b.c1 = 1;
                                  QUERY PLAN                                  
------------------------------------------------------------------------------
 Nested Loop  (cost=0.00..85.89 rows=169 width=8) -- 外连接(Left关键字)已被消除
   Output: a.c1, b.c1
   ->  Seq Scan on public.t_null1 a  (cost=0.00..41.88 rows=13 width=4)
         Output: a.c1
         Filter: (a.c1 = 1)
   ->  Materialize  (cost=0.00..41.94 rows=13 width=4)
         Output: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..41.88 rows=13 width=4)
               Output: b.c1
               Filter: (b.c1 = 1)
(10 rows)

第二种形如:
SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
这种语句如满足条件可以变换为反半连接(ANTI-SEMIJOIN).
过滤条件已明确要求Nullable-Side端y IS NULL,如果连接条件是a.x = b.y这类严格(strict)的条件,那么这样的外连接与反半连接的结果是一样的.

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1 where b.c1 is null;
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Hash Anti Join  (cost=67.38..152.44 rows=1275 width=8) -- 变换为反连接
   Output: a.c1, b.c1
   Hash Cond: (a.c1 = b.c1)
   ->  Seq Scan on public.t_null1 a  (cost=0.00..35.50 rows=2550 width=4)
         Output: a.c1
   ->  Hash  (cost=35.50..35.50 rows=2550 width=4)
         Output: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..35.50 rows=2550 width=4)
               Output: b.c1
(9 rows)

值得一提的是,在PG中,形如SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;这样的SQL语句,WHERE b.y = 42这类条件可以视为连接的上层过滤条件,在查询树中,Jointree->fromlist(元素类型为JoinExpr)与Jointree->quals处于同一层次,由于JoinExpr中的quals为同层条件,因此其上层即为Jointree->quals.有兴趣的可以查看日志输出查看Query查询树结构.

二、源码解读

消除外连接的代码在主函数subquery_planner中,通过调用reduce_outer_joins函数实现,代码片段如下:

     /*
      * If we have any outer joins, try to reduce them to plain inner joins.
      * This step is most easily done after we've done expression
      * preprocessing.
      */
     if (hasOuterJoins)
         reduce_outer_joins(root);

reduce_outer_joins


相关的数据结构和依赖的子函数:
reduce_outer_joins_state

 typedef struct reduce_outer_joins_state
 {
     Relids      relids;         /* base relids within this subtree */
     bool        contains_outer; /* does subtree contain outer join(s)? */
     List       *sub_states;     /* List of states for subtree components */
 } reduce_outer_joins_state;

BitmapXX

 typedef struct Bitmapset
 {
     int         nwords;         /* number of words in array */
     bitmapword  words[FLEXIBLE_ARRAY_MEMBER];   /* really [nwords] */
 } Bitmapset;
 
 #define WORDNUM(x)  ((x) / BITS_PER_BITMAPWORD)
 #define BITNUM(x)   ((x) % BITS_PER_BITMAPWORD)
 /* The unit size can be adjusted by changing these three declarations: */
 #define BITS_PER_BITMAPWORD 32
 typedef uint32 bitmapword; /* must be an unsigned type */


 /*
  * bms_make_singleton - build a bitmapset containing a single member
  */
 Bitmapset *
 bms_make_singleton(int x)
 {
     Bitmapset  *result;
     int         wordnum,
                 bitnum;
 
     if (x < 0)
         elog(ERROR, "negative bitmapset member not allowed");
     wordnum = WORDNUM(x);
     bitnum = BITNUM(x);
     result = (Bitmapset *) palloc0(BITMAPSET_SIZE(wordnum + 1));
     result->nwords = wordnum + 1;
     result->words[wordnum] = ((bitmapword) 1 << bitnum);
     return result;
 }


 /*
  * bms_add_member - add a specified member to set
  *
  * Input set is modified or recycled!
  */
 Bitmapset *
 bms_add_member(Bitmapset *a, int x)
 {
     int         wordnum,
                 bitnum;
 
     if (x < 0)
         elog(ERROR, "negative bitmapset member not allowed");
     if (a == NULL)
         return bms_make_singleton(x);
     wordnum = WORDNUM(x);
     bitnum = BITNUM(x);
 
     /* enlarge the set if necessary */
     if (wordnum >= a->nwords)
     {
         int         oldnwords = a->nwords;
         int         i;
 
         a = (Bitmapset *) repalloc(a, BITMAPSET_SIZE(wordnum + 1));
         a->nwords = wordnum + 1;
         /* zero out the enlarged portion */
         for (i = oldnwords; i < a->nwords; i++)
             a->words[i] = 0;
     }
 
     a->words[wordnum] |= ((bitmapword) 1 << bitnum);
     return a;
 }

find_nonnullable_rels

 /*
  * find_nonnullable_rels
  *      Determine which base rels are forced nonnullable by given clause.
  *
  * Returns the set of all Relids that are referenced in the clause in such
  * a way that the clause cannot possibly return TRUE if any of these Relids
  * is an all-NULL row.  (It is OK to err on the side of conservatism; hence
  * the analysis here is simplistic.)
  *
  * The semantics here are subtly different from contain_nonstrict_functions:
  * that function is concerned with NULL results from arbitrary expressions,
  * but here we assume that the input is a Boolean expression, and wish to
  * see if NULL inputs will provably cause a FALSE-or-NULL result.  We expect
  * the expression to have been AND/OR flattened and converted to implicit-AND
  * format.
  *
  * Note: this function is largely duplicative of find_nonnullable_vars().
  * The reason not to simplify this function into a thin wrapper around
  * find_nonnullable_vars() is that the tested conditions really are different:
  * a clause like "t1.v1 IS NOT NULL OR t1.v2 IS NOT NULL" does not prove
  * that either v1 or v2 can't be NULL, but it does prove that the t1 row
  * as a whole can't be all-NULL.
  *
  * top_level is true while scanning top-level AND/OR structure; here, showing
  * the result is either FALSE or NULL is good enough.  top_level is false when
  * we have descended below a NOT or a strict function: now we must be able to
  * prove that the subexpression goes to NULL.
  *
  * We don't use expression_tree_walker here because we don't want to descend
  * through very many kinds of nodes; only the ones we can be sure are strict.
  */
 Relids
 find_nonnullable_rels(Node *clause)
 {
     return find_nonnullable_rels_walker(clause, true);
 }
 
 static Relids
 find_nonnullable_rels_walker(Node *node, bool top_level)
 {
     Relids      result = NULL;
     ListCell   *l;
 
     if (node == NULL)
         return NULL;
     if (IsA(node, Var))
     {
         Var        *var = (Var *) node;
 
         if (var->varlevelsup == 0)
             result = bms_make_singleton(var->varno);
     }
     else if (IsA(node, List))
     {
         /*
          * At top level, we are examining an implicit-AND list: if any of the
          * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
          * not at top level, we are examining the arguments of a strict
          * function: if any of them produce NULL then the result of the
          * function must be NULL.  So in both cases, the set of nonnullable
          * rels is the union of those found in the arms, and we pass down the
          * top_level flag unmodified.
          */
         foreach(l, (List *) node)
         {
             result = bms_join(result,
                               find_nonnullable_rels_walker(lfirst(l),
                                                            top_level));
         }
     }
     else if (IsA(node, FuncExpr))
     {
         FuncExpr   *expr = (FuncExpr *) node;
 
         if (func_strict(expr->funcid))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, OpExpr))
     {
         OpExpr     *expr = (OpExpr *) node;
 
         set_opfuncid(expr);
         if (func_strict(expr->opfuncid))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, ScalarArrayOpExpr))
     {
         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
 
         if (is_strict_saop(expr, true))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, BoolExpr))
     {
         BoolExpr   *expr = (BoolExpr *) node;
 
         switch (expr->boolop)
         {
             case AND_EXPR:
                 /* At top level we can just recurse (to the List case) */
                 if (top_level)
                 {
                     result = find_nonnullable_rels_walker((Node *) expr->args,
                                                           top_level);
                     break;
                 }
 
                 /*
                  * Below top level, even if one arm produces NULL, the result
                  * could be FALSE (hence not NULL).  However, if *all* the
                  * arms produce NULL then the result is NULL, so we can take
                  * the intersection of the sets of nonnullable rels, just as
                  * for OR.  Fall through to share code.
                  */
                 /* FALL THRU */
             case OR_EXPR:
 
                 /*
                  * OR is strict if all of its arms are, so we can take the
                  * intersection of the sets of nonnullable rels for each arm.
                  * This works for both values of top_level.
                  */
                 foreach(l, expr->args)
                 {
                     Relids      subresult;
 
                     subresult = find_nonnullable_rels_walker(lfirst(l),
                                                              top_level);
                     if (result == NULL) /* first subresult? */
                         result = subresult;
                     else
                         result = bms_int_members(result, subresult);
 
                     /*
                      * If the intersection is empty, we can stop looking. This
                      * also justifies the test for first-subresult above.
                      */
                     if (bms_is_empty(result))
                         break;
                 }
                 break;
             case NOT_EXPR:
                 /* NOT will return null if its arg is null */
                 result = find_nonnullable_rels_walker((Node *) expr->args,
                                                       false);
                 break;
             default:
                 elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
                 break;
         }
     }
     else if (IsA(node, RelabelType))
     {
         RelabelType *expr = (RelabelType *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, CoerceViaIO))
     {
         /* not clear this is useful, but it can't hurt */
         CoerceViaIO *expr = (CoerceViaIO *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, ArrayCoerceExpr))
     {
         /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
         ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, ConvertRowtypeExpr))
     {
         /* not clear this is useful, but it can't hurt */
         ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, CollateExpr))
     {
         CollateExpr *expr = (CollateExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, NullTest))
     {
         /* IS NOT NULL can be considered strict, but only at top level */
         NullTest   *expr = (NullTest *) node;
 
         if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
             result = find_nonnullable_rels_walker((Node *) expr->arg, false);
     }
     else if (IsA(node, BooleanTest))
     {
         /* Boolean tests that reject NULL are strict at top level */
         BooleanTest *expr = (BooleanTest *) node;
 
         if (top_level &&
             (expr->booltesttype == IS_TRUE ||
              expr->booltesttype == IS_FALSE ||
              expr->booltesttype == IS_NOT_UNKNOWN))
             result = find_nonnullable_rels_walker((Node *) expr->arg, false);
     }
     else if (IsA(node, PlaceHolderVar))
     {
         PlaceHolderVar *phv = (PlaceHolderVar *) node;
 
         result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
     }
     return result;
 }

三、跟踪分析

外连接->内连接
测试脚本:

select * 
from t_null1 a left join t_null2 b on a.c1 = b.c1 
where b.c1 = 1;

gdb跟踪:

(gdb) b reduce_outer_joins
Breakpoint 1 at 0x77faf5: file prepjointree.c, line 2484.
(gdb) c
Continuing.

Breakpoint 1, reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2484
2484    state = reduce_outer_joins_pass1((Node *) root->parse->jointree);

(gdb) b reduce_outer_joins
Breakpoint 1 at 0x77faf5: file prepjointree.c, line 2484.
...
#进入reduce_outer_joins_pass1
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2ea4af8) at prepjointree.c:2504
...
(gdb) p *f
$2 = {type = T_FromExpr, fromlist = 0x2ea4668, quals = 0x2edcae8}
#进入FromExpr分支
(gdb) n
2527        sub_state = reduce_outer_joins_pass1(lfirst(l));
##递归调用
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2dd40f0) at prepjointree.c:2504
2504    result = (reduce_outer_joins_state *)
##进入JoinExpr分支
2534    else if (IsA(jtnode, JoinExpr))
(gdb) 
2536      JoinExpr   *j = (JoinExpr *) jtnode;
(gdb) p *j
$3 = {type = T_JoinExpr, jointype = JOIN_LEFT, isNatural = false, larg = 0x2dd49e0, rarg = 0x2dd4c68, usingClause = 0x0, 
  quals = 0x2edc828, alias = 0x0, rtindex = 3}
###递归调用
2543      sub_state = reduce_outer_joins_pass1(j->larg);
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2dd49e0) at prepjointree.c:2504
2504    result = (reduce_outer_joins_state *)
###进入RangeTblRef分支
2512    if (IsA(jtnode, RangeTblRef))
(gdb) 
2514      int     varno = ((RangeTblRef *) jtnode)->rtindex;
...
###JoinExpr处理完毕
2549      sub_state = reduce_outer_joins_pass1(j->rarg);
(gdb) 
2551                       sub_state->relids);
(gdb) 
2550      result->relids = bms_add_members(result->relids,
(gdb) 
2552      result->contains_outer |= sub_state->contains_outer;
(gdb) 
2553      result->sub_states = lappend(result->sub_states, sub_state);
(gdb) 
2558    return result;
(gdb) p *result
$12 = {relids = 0x2ea61e8, contains_outer = true, sub_states = 0x2edcbc8}
(gdb) p *result->relids
$13 = {nwords = 1, words = 0x2ea61ec}
(gdb) p *result->sub_states
$14 = {type = T_List, length = 2, head = 0x2edcba8, tail = 0x2edcc40}
(gdb) n
2559  }
(gdb) 
##回到FromExpr
...
2523      foreach(l, f->fromlist)
(gdb) p *result
$18 = {relids = 0x2edcc60, contains_outer = true, sub_states = 0x2edcc98}
#回到reduce_outer_joins
reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2487
2487    if (state == NULL || !state->contains_outer)
(gdb) p *state
$21 = {relids = 0x2edcc60, contains_outer = true, sub_states = 0x2edcc98}
(gdb) p *state->relids[0]->words
$30 = 6 -->Relids,1 & 2,即1<<1 | 1 << 2
#进入reduce_outer_joins_pass2
(gdb) step
reduce_outer_joins_pass2 (jtnode=0x2ea4af8, state=0x2edcb18, root=0x2eafa98, nonnullable_rels=0x0, nonnullable_vars=0x0, 
    forced_null_vars=0x0) at prepjointree.c:2583
2583    if (jtnode == NULL)
...
#进入FromExpr分支
2587    else if (IsA(jtnode, FromExpr))
(gdb) 
2589      FromExpr   *f = (FromExpr *) jtnode;
...
#寻找FromExpr中存在过滤条件为NOT NULL的Relids
(gdb) n
2597      pass_nonnullable_rels = find_nonnullable_rels(f->quals);
(gdb) 
2598      pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
(gdb) p pass_nonnullable_rels->words[0]
$34 = 4 -- rtindex = 2的Relid
#寻找NOT NULL's Vars
2601      pass_nonnullable_vars = find_nonnullable_vars(f->quals);
(gdb) 
2602      pass_nonnullable_vars = list_concat(pass_nonnullable_vars,
(gdb) 
2604      pass_forced_null_vars = find_forced_null_vars(f->quals);
(gdb) p *pass_nonnullable_vars
$35 = {type = T_List, length = 1, head = 0x2edcce0, tail = 0x2edcce0}
(gdb) p *(Node *)pass_nonnullable_vars->head->data.ptr_value
$36 = {type = T_Var}
(gdb) p *(Var *)pass_nonnullable_vars->head->data.ptr_value
$37 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 65} -- rtindex=2的RTE,属性编号为1的字段
##递归调用reduce_outer_joins_pass2
(gdb) 
2614          reduce_outer_joins_pass2(lfirst(l), sub_state, root,
(gdb) step
reduce_outer_joins_pass2 (jtnode=0x2dd40f0, state=0x2edcb48, root=0x2eafa98, nonnullable_rels=0x2edccc8, 
    nonnullable_vars=0x2edcd00, forced_null_vars=0x0) at prepjointree.c:2583
2583    if (jtnode == NULL)
##进入JoinExpr分支
2622    else if (IsA(jtnode, JoinExpr))
(gdb) 
2624      JoinExpr   *j = (JoinExpr *) jtnode;
...
(gdb) p *right_state->relids[0]->words
$44 = 4 -->2号RTE
(gdb) p *left_state->relids[0]->words
$45 = 2 -->1号RTE
(gdb) p rtindex
$46 = 3 -->Jointree整体作为3号RTE存在
...
2633      switch (jointype)
(gdb) 
2638          if (bms_overlap(nonnullable_rels, right_state->relids))
(gdb) p *nonnullable_rels->words
$49 = 4 -->2号RTE
(gdb) p right_state->relids->words[0]
$50 = 4 -->2号RTE
##转换为内连接
(gdb) n
2639            jointype = JOIN_INNER;
...
##修改RTE的连接类型
(gdb) 
2724      if (rtindex && jointype != j->jointype)
(gdb)
2726        RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
(gdb) 
2730        rte->jointype = jointype;
(gdb) p *rte
$54 = {type = T_RangeTblEntry, rtekind = RTE_JOIN, relid = 0, relkind = 0 '\000', tablesample = 0x0, subquery = 0x0, 
  security_barrier = false, jointype = JOIN_LEFT, joinaliasvars = 0x0, functions = 0x0, funcordinality = false, 
  tablefunc = 0x0, values_lists = 0x0, ctename = 0x0, ctelevelsup = 0, self_reference = false, coltypes = 0x0, 
  coltypmods = 0x0, colcollations = 0x0, enrname = 0x0, enrtuples = 0, alias = 0x0, eref = 0x2ea4498, lateral = false, 
  inh = false, inFromCl = true, requiredPerms = 2, checkAsUser = 0, selectedCols = 0x0, insertedCols = 0x0, 
  updatedCols = 0x0, securityQuals = 0x0}
(gdb) n
2732      j->jointype = jointype;
...
#回到上层的reduce_outer_joins_pass2
(gdb) 
reduce_outer_joins_pass2 (jtnode=0x2ea4af8, state=0x2edcb18, root=0x2eafa98, nonnullable_rels=0x0, nonnullable_vars=0x0, 
    forced_null_vars=0x0) at prepjointree.c:2609
2609      forboth(l, f->fromlist, s, state->sub_states)
#回到主函数reduce_outer_joins
2844  }
(gdb) 
reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2492
2492  }
(gdb) 
#DONE!

外连接->反连接
测试脚本:

select * 
from t_null1 a left join t_null2 b on a.c1 = b.c1 
where b.c1 is null;

gdb跟踪,与转换为内连接不同的地方在于reduce_outer_joins_pass2函数中find_forced_null_vars在这里是可以找到相应的Vars的:

(gdb) b prepjointree.c:2702
Breakpoint 3 at 0x78023c: file prepjointree.c, line 2702.
(gdb) c
Continuing.

Breakpoint 3, reduce_outer_joins_pass2 (jtnode=0x2dd40f0, state=0x2edc9b8, root=0x2eafa98, nonnullable_rels=0x0, 
    nonnullable_vars=0x0, forced_null_vars=0x2edcb70) at prepjointree.c:2703
2703      if (jointype == JOIN_LEFT)
#尝试转换为内连接,但不成功,仍为左连接
2707        local_nonnullable_vars = find_nonnullable_vars(j->quals);
(gdb) 
2708        computed_local_nonnullable_vars = true;
(gdb) p *local_nonnullable_vars
$56 = {type = T_List, length = 2, head = 0x2edcba0, tail = 0x2edcbf0}
(gdb) p *(Var *)local_nonnullable_vars->head->data.ptr_value
$57 = {xpr = {type = T_Var}, varno = 1, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 1, varoattno = 1, location = 47}
(gdb) p *(Var *)local_nonnullable_vars->head->next->data.ptr_value
$58 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 54}
(gdb) p *(Var *)forced_null_vars->head->data.ptr_value
$61 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 65}
(gdb) p *(Var *)overlap->head->data.ptr_value
$63 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 54}
...
#转换为反连接
2717        if (overlap != NIL &&
(gdb) 
2720          jointype = JOIN_ANTI;
(gdb) c
Continuing.

“PostgreSQL查询优化中对消除外连接的处理过程是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


分享标题:PostgreSQL查询优化中对消除外连接的处理过程是什么
标题网址:http://cqcxhl.com/article/jojgii.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP