重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家介绍使用python怎么检测静态图像中的人脸,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都创新互联公司主要从事成都网站设计、成都网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务乌达,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575
Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编写自动化脚本,随着版本的不断更新和新功能的添加,常用于用于开发独立的项目和大型项目。
1、使用 OpenCV 进行人脸检测加载图像并检测人脸,在原始图像的人脸周围绘制矩形框。
# 人脸检测 import cv2 as cv def face_detect(): # 将图片灰度处理,降低色彩的通道 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 加载特征数据 face_detector = cv.CascadeClassifier('D:/Python/opencv/sources/data /haarcascades/haarcascade_frontalface_default.xml') face = face_detector.detectMultiScale(gray) for x, y, w, h in face: # 坐标及宽度高度 cv.rectangle(img, (x, y), (x+w, y+h), color=(0, 255, 0), thickness=2) # img所画图片,坐标,颜色,宽度 # 显示 cv.imshow('result', img) # 加载图片 img = cv.imread('lena.jpg') # 人脸检测 face_detect() cv.waitKey(0) cv.destroyAllWindows()
2、当图片中人数较多时,识别需要指定参数。
限定识别范围参数:
scaleFactor(比例因子):图片缩放多少;
minNeighbors:至少检测多少次;
minSize maxSize:当前检测区域的最大最小面积。
# 将照片灰度 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 加载特征数据 face_detector = cv.CascadeClassifier('D:/Python/opencv/sources/data/haarcascades /haarcascade_frontalface_default.xml')
关于使用python怎么检测静态图像中的人脸就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。