重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

TensorFlow平台下Python实现神经网络-创新互联

本篇文章主要通过一个简单的例子来实现神经网络。训练数据是随机产生的模拟数据集,解决二分类问题。

成都创新互联是一家专注于网站制作、成都做网站与策划设计,五大连池网站建设哪家好?成都创新互联做网站,专注于网站建设10年,网设计领域的专业建站公司;建站业务涵盖:五大连池等地区。五大连池做网站价格咨询:13518219792

下面我们首先说一下,训练神经网络的一般过程:

1.定义神经网络的结构和前向传播的输出结果

2.定义损失函数以及反向传播优化的算法

3.生成会话(Session)并且在训练数据上反复运行反向传播优化算法

要记住的一点是,无论神经网络的结构如何变化,以上三个步骤是不会改变的。

完整代码如下:

import tensorflow as tf 
#导入TensorFlow工具包并简称为tf 
 
from numpy.random import RandomState 
#导入numpy工具包,生成模拟数据集 
 
batch_size = 8 
#定义训练数据batch的大小 
 
w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1)) 
w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) 
#分别定义一二层和二三层之间的网络参数,标准差为1,随机产生的数保持一致 
 
x = tf.placeholder(tf.float32,shape=(None,2),name='x-input') 
y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-input') 
#输入为两个维度,即两个特征,输出为一个标签,声明数据类型float32,None即一个batch大小 
#y_是真实的标签 
 
a = tf.matmul(x,w1) 
y = tf.matmul(a,w2) 
#定义神经网络前向传播过程 
 
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0))) 
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) 
#定义损失函数和反向传播算法 
 
rdm = RandomState(1) 
dataset_size = 128 
#产生128组数据 
X = rdm.rand(dataset_size,2) 
Y = [[int(x1+x2 < 1)] for (x1,x2) in X] 
#将所有x1+x2<1的样本视为正样本,表示为1;其余为0 
 
#创建会话来运行TensorFlow程序 
with tf.Session() as sess: 
 init_op = tf.global_variables_initializer() 
 #初始化变量 
 sess.run(init_op) 
 
 print(sess.run(w1)) 
 print(sess.run(w2)) 
 #打印出训练网络之前网络参数的值 
 
 STEPS = 5000 
 #设置训练的轮数 
 for i in range(STEPS): 
  start = (i * batch_size) % dataset_size 
  end = min(start+batch_size,dataset_size) 
 #每次选取batch_size个样本进行训练 
  
  sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]}) 
 #通过选取的样本训练神经网络并更新参数 
  
  if i%1000 == 0: 
   total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y}) 
   print("After %d training step(s),cross entropy on all data is %g" % (i,total_cross_entropy)) 
 #每隔一段时间计算在所有数据上的交叉熵并输出,随着训练的进行,交叉熵逐渐变小 
 
 print(sess.run(w1)) 
 print(sess.run(w2)) 
 #打印出训练之后神经网络参数的值 

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站栏目:TensorFlow平台下Python实现神经网络-创新互联
网站路径:http://cqcxhl.com/article/jpoej.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP