重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
小编给大家分享一下leetcode中如何解决爬楼梯问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
龙文网站制作公司哪家好,找创新互联建站!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设等网站项目制作,到程序开发,运营维护。创新互联建站于2013年创立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联建站。
https://leetcode-cn.com/problems/climbing-stairs/
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n
是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
标签:数学
如果观察数学规律,可知本题是斐波那契数列,那么用斐波那契数列的公式即可解决问题,公式如下:
时间复杂度:O(logn)
Java版本
class Solution {
public int climbStairs(int n) {
double sqrt_5 = Math.sqrt(5);
double fib_n = Math.pow((1 + sqrt_5) / 2, n + 1) - Math.pow((1 - sqrt_5) / 2,n + 1);
return (int)(fib_n / sqrt_5);
}
}
JavaScript版本
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
const sqrt_5 = Math.sqrt(5);
const fib_n = Math.pow((1 + sqrt_5) / 2, n + 1) - Math.pow((1 - sqrt_5) / 2,n + 1);
return Math.round(fib_n / sqrt_5);
};
标签:动态规划
本问题其实常规解法可以分成多个子问题,爬第n阶楼梯的方法数量,等于2部分之和
爬上n-1阶楼梯的方法数量。因为再爬1阶就能到第n阶
爬上n-2阶楼梯的方法数量,因为再爬2阶就能到第n阶
所以我们得到公式dp[n] = dp[n-1] + dp[n-2]
同时需要初始化dp[0]=1
和dp[1]=1
时间复杂度:O(n)
Java版本
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
JavaScript版本
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
const dp = [];
dp[0] = 1;
dp[1] = 1;
for(let i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
};
以上是“leetcode中如何解决爬楼梯问题”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!