重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在之前的Hadoop是什么中已经说过MapReduce采用了分而治之的思想,MapReduce主要分为两部分,一部分是Map——分,一部分是Reduce——合
成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站设计制作、成都网站制作、集美网络推广、小程序开发、集美网络营销、集美企业策划、集美品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供集美建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com
MapReduce全过程的数据都是以键值对的形式存在的
如果你想了解大数据的学习路线,想学习大数据知识以及需要免费的学习资料可以加群:784789432.欢迎你的加入。每天下午三点开直播分享基础知识,晚上20:00都会开直播给大家分享大数据项目实战。
首先,我们假设我们有一个文件,文件中存了以下内容
hive spark hive hbase
hadoop hive spark
sqoop flume scala
这里涉及到一个偏移量(一个字符或空格为1位)
第一行的偏移量为0,内容为“hive spark hive hbase”
第二行的偏移量为21,内容为“hadoop hive spark”
第三行的偏移量为39,内容为“sqoop flume scala”
Map
输入
MapReduce处理的数据是从HDFS中读出来的
以偏移量为key,内容value,则存在:
(0,“hive spark hive hbase”)
(21,“hadoop hive spark”)
(39,“sqoop flume scala”)
输出
将输入的value中的词以空格为分割逐个取出来做key,1做value存起来
(hive,1)
(spark,1)
(hive,1)
(hbase,1)
(hadoop,1)
注意:有多少行,Map就要循环做几次
shuffle(之后会详细说,这里简单解释)
输入
map的输出
输出
相同的key的value进行合并
这里合并不是进行累加或别的运算,而是合并到一个集合中
(hive,[1,1,1])
(spark,[1,1])
(hbase,[1])
(hadoop,[1])
。。。。。。
reduce
输入
shuffle的输出
输出
根据业务将value进行合并
例如当前的业务就会将value进行累加
MapReduce处理数据五步走
整个MapReduce程序,所有数据以(key,value)形式流动
第一步:input
正常情况下不需要写代码
仅仅在MapReduce程序运行的时候指定一个路径即可
第二步:map(核心)
map(key,value,output,context)
key:每行数据的偏移量——基本没用
value:每行数据的内容——真正需要处理的内容
第三步:shuffle
不需要写代码
第四步:reduce(核心)
reduce(key,value,output,context)
key:业务需求中的key
value:要聚合的值
第五步:output
正常情况下不需要写代码
仅仅在MapReduce程序运行的时候指定一个路径即可
工作原理
这里写图片描述