重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python如何实现Kmeans聚类算法-创新互联

这篇文章主要讲解了Python如何实现Kmeans聚类算法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

创新互联公司主要从事成都网站建设、网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务延寿,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575

关于聚类

    聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类。有了这个认识之后,就应该了解了聚类算法要干什么了吧。说白了,就是归类。
    首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类)。这里,语言的相似性(或者身高)就成了我们衡量相似的量度了。在考虑存在海量数据,如微博上各种用户的关系网,如何根据用户的关注和被关注来聚类,给用户推荐他们感兴趣的用户?这就是聚类算法研究的内容之一了。
    Kmeans就是这样的聚类算法中比较简单的算法,给定数据样本集Sample和应该划分的类数K,对样本数据Sample进行聚类,最终形成K个cluster,其相似的度量是某条数据i与中心点的”距离”(这里所说的距离,不止于二维)。

基本思想

KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。

基本步骤

K-Means聚类算法主要分为三个步骤:
1,初始化k个聚类中心。
2,计算出每个对象跟这k个中心的距离(相似度计算,这个下面会提到),假如x这个对象跟y这个中心的距离最小(相似度大),那么x属于y这个中心。这一步就可以得到初步的k个聚类 。
3,在第二步得到的每个聚类分别计算出新的聚类中心,和旧的中心比对,假如不相同,则继续第2步,直到新旧两个中心相同,说明聚类不可变,已经成功 。

复杂度分析

时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数
空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数

初始质心的选择

    选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始质心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。
     第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取K个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:
        (1)样本相对较小,例如数百到数千(层次聚类开销较大);
        (2)K相对于样本大小较小

    第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。
    第四种方法是使用canopy算法进行初始划分。基于Canopy Method的聚类算法将聚类过程分为两个阶段:
   Stage1:聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理。
  Stage2:在各个Canopy 内使用传统的聚类方法(如K-means),不属于同一Canopy 的对象之间不进行相似性计算。从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K的值的,通过Stage1得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性。

算法实验

任务

在给定的Iris.txt样本文件中,用K-means聚类算法将150个4维样本数据分成3类

数据集(Iris.txt)

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
5.0 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3.0 1.4 0.1
4.3 3.0 1.1 0.1
5.8 4.0 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 1.0 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
5.0 3.0 1.6 0.2
5.0 3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
5.0 3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 3.0 1.3 0.2
5.1 3.4 1.5 0.2
5.0 3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
5.0 3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 3.0 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
5.0 3.3 1.4 0.2
7.0 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4.0 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3 1.0
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
5.0 2.0 3.5 1.0
5.9 3.0 4.2 1.5
6.0 2.2 4.0 1.0
6.1 2.9 4.7 1.4
5.6 2.9 3.9 1.3
6.7 3.1 4.4 1.4
5.6 3.0 4.5 1.5
5.8 2.7 4.1 1.0
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 4.0 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 3.0 4.4 1.4
6.8 2.8 4.8 1.4
6.7 3.0 5.0 1.7
6.0 2.9 4.5 1.5
5.7 2.6 3.5 1.0
5.5 2.4 3.8 1.1
5.5 2.4 3.7 1.0
5.8 2.7 3.9 1.2
6.0 2.7 5.1 1.6
5.4 3.0 4.5 1.5
6.0 3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 3.0 4.1 1.3
5.5 2.5 5.0 1.3
5.5 2.6 4.4 1.2
6.1 3.0 4.6 1.4
5.8 2.6 4.0 1.2
5.0 2.3 3.3 1.0
5.6 2.7 4.2 1.3
5.7 3.0 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 3.0 1.1
5.7 2.8 4.1 1.3
6.3 3.3 6.0 2.5
5.8 2.7 5.1 1.9
7.1 3.0 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2
7.6 3.0 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1 2.0
6.4 2.7 5.3 1.9
6.8 3.0 5.5 2.1
5.7 2.5 5.0 2.0
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 3.0 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6.0 2.2 5.0 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9 2.0
7.7 2.8 6.7 2.0
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 6.0 1.8
6.2 2.8 4.8 1.8
6.1 3.0 4.9 1.8
6.4 2.8 5.6 2.1
7.2 3.0 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4 2.0
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 3.0 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
6.0 3.0 4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

Python实现

算法流程

第一步,将文件中的数据读入到dataset列表中,通过len(dataset[0])来获取数据维数,在测试样例中是四维
第二步,产生聚类的初始位置。首先扫描数据,获取每一维数据分量中的大值和最小值,然后在这个区间上随机产生一个值,循环k次(k为所分的类别),这样就产生了聚类初始中心(k个)
第三步,按照最短距离(欧式距离)原则将所有样本分配到k个聚类中心中的某一个,这步操作的结果是产生列表assigments,可以通过Python中的zip函数整合成字典。注意到原始聚类中心可能不在样本中,因此可能出现分配的结果出现某一个聚类中心点集合为空,此时需要结束,提示“随机数产生错误,需要重新运行”,以产生合适的初始中心。
第四步,计算各个聚类中心的新向量,更新距离,即每一类中每一维均值向量。然后再进行分配,比较前后两个聚类中心向量是否相等,若不相等则进行循环,否则终止循环,进入下一步。
最后,将结果输出到文件和屏幕中

代码如下

# coding=gbk
#python edition: Python3.4.1,2014,9,24
from collections import defaultdict
from random import uniform
from math import sqrt

def read_points():
 dataset=[]
 with open('Iris.txt','r') as file:
  for line in file:
   if line =='\n':
    continue
   dataset.append(list(map(float,line.split(' '))))
  file.close() 
  return dataset

def write_results(listResult,dataset,k):
 with open('result.txt','a') as file:
  for kind in range(k):
    file.write( "CLASSINFO:%d\n"%(kind+1) )
    for j in listResult[kind]:
     file.write('%d\n'%j)
    file.write('\n')
  file.write('\n\n')
  file.close()

def point_avg(points):
 dimensions=len(points[0])
 new_center=[]
 for dimension in range(dimensions):
  sum=0
  for p in points:
   sum+=p[dimension]
  new_center.append(float("%.8f"%(sum/float(len(points)))))
 return new_center

def update_centers(data_set ,assignments,k):
 new_means = defaultdict(list)
 centers = []
 for assignment ,point in zip(assignments , data_set):
  new_means[assignment].append(point)
 for i in range(k):
  points=new_means[i]
  centers.append(point_avg(points))
 return centers

def assign_points(data_points,centers):
 assignments=[]
 for point in data_points:
  shortest=float('inf')
  shortest_index = 0
  for i in range(len(centers)):
   value=distance(point,centers[i])
   if valuemin_max[max_key]:
    min_max[max_key]=value
 for j in range(k):
  rand_point=[]
  for i in range(dimentions):
   min_val=min_max['min_%d'%i]
   max_val=min_max['max_%d'%i]
   tmp=float("%.8f"%(uniform(min_val,max_val)))
   rand_point.append(tmp)
  centers.append(rand_point)
 return centers

def k_means(dataset,k):
 k_points=generate_k(dataset,k)
 assignments=assign_points(dataset,k_points)
 old_assignments=None
 while assignments !=old_assignments:
  new_centers=update_centers(dataset,assignments,k)
  old_assignments=assignments
  assignments=assign_points(dataset,new_centers)
 result=list(zip(assignments,dataset))
 print('\n\n---------------------------------分类结果---------------------------------------\n\n')
 for out in result :
  print(out,end='\n')
 print('\n\n---------------------------------标号简记---------------------------------------\n\n')
 listResult=[[] for i in range(k)]
 count=0
 for i in assignments:
  listResult[i].append(count)
  count=count+1
 write_results(listResult,dataset,k)
 for kind in range(k):
  print("第%d类数据有:"%(kind+1))
  count=0
  for j in listResult[kind]:
    print(j,end=' ')
    count=count+1
    if count%25==0:
     print('\n')
  print('\n')
 print('\n\n--------------------------------------------------------------------------------\n\n')

def main():
 dataset=read_points()
 k_means(dataset,3)

if __name__ == "__main__": 
 main()

本文名称:Python如何实现Kmeans聚类算法-创新互联
URL地址:http://cqcxhl.com/article/pdcjo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP