重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
车道线检测,需要完成以下功能:
创新互联总部坐落于成都市区,致力网站建设服务有成都网站设计、成都网站建设、网络营销策划、网页设计、网站维护、公众号搭建、重庆小程序开发、软件开发等为企业提供一整套的信息化建设解决方案。创造真正意义上的网站建设,为互联网品牌在互动行销领域创造价值而不懈努力!
实现的效果
在亮度良好道路条件良好的情况下,检测车前区域的车道线实现比较成功,排除掉高速护栏的影响,而且原图像还能完整体现。
车子行驶在高速公路大型弯道上,可以在一定角度范围内认定车道线仍是直线,检测出为直线。
车子切换过程中只有一根车道线被识别,但是稳定回变换车道后,实现效果良好。减速线为黄色,二值化是也被过滤,没造成影响。
刚进入隧道时,摄像机光源基本处于高光状态,拍摄亮度基本不变,二值化图像时情况良好,噪声比较多但是没产生多大线状影响;当摄像头自动调节亮度,图像亮度变低,二值化时同一阈值把车道线给过滤掉,造成无法识别车道线的现象。
在道路损坏的情况下,由于阈值一定,基本上检测不出车道线。
结论
实现的功能:实现了车道线检测的基本功能,反透视变换矩阵实现了但效果不太理想,使用自己写的直线检测部分,车道线识别抗干扰能力较强。
缺点:整个识别系统都是固定的参数,只能在特定的环境产生良好的效果。
改进空间:提取全部关键参数,每次对ROI图像进行快速扫描更新参数,否则使用默认参数。例如,可以选择每次5间隔取点,以像素最高点的85%作为该次二值化的阈值。从而做到动态车道线识别。
完整代码
方法一
main.cpp
#include#include #include #include"mylinedetect.h" #include #include using namespace std; int main(){ //声明IplImage指针 IplImage* pFrame = NULL; IplImage* pCutFrame = NULL; IplImage* pCutFrImg = NULL; //声明CvCapture指针 CvCapture* pCapture = NULL; //声明CvMemStorage和CvSeg指针 CvMemStorage* storage = cvCreateMemStorage(); CvSeq* lines = NULL; //生成视频的结构 VideoWriter writer("result.avi", CV_FOURCC('M', 'J', 'P', 'G'), 25.0, Size(856, 480)); //当前帧数 int nFrmNum = 0; //裁剪的天空高度 int CutHeight = 310; //窗口命名 cvNamedWindow("video", 1); cvNamedWindow("BWmode", 1); //调整窗口初始位置 cvMoveWindow("video", 300, 0); cvMoveWindow("BWmode", 300, 520); //不能打开则退出 if (!(pCapture = cvCaptureFromFile("lane.avi"))){ fprintf(stderr, "Can not open video file\n"); return -2; } //每次读取一桢的视频 while (pFrame = cvQueryFrame(pCapture)){ //设置ROI裁剪图像 cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight)); nFrmNum++; //第一次要申请内存p if (nFrmNum == 1){ pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels); cvCopy(pFrame, pCutFrame, 0); pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1); //转化成单通道图像再处理 cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY); } else{ //获得剪切图 cvCopy(pFrame, pCutFrame, 0); #if 0 //反透视变换 //二维坐标下的点,类型为浮点 CvPoint2D32f srcTri[4], dstTri[4]; CvMat* warp_mat = cvCreateMat(3, 3, CV_32FC1); //计算矩阵反射变换 srcTri[0].x = 10; srcTri[0].y = 20; srcTri[1].x = pCutFrame->width - 5; srcTri[1].y = 0; srcTri[2].x = 0; srcTri[2].y = pCutFrame->height - 1; srcTri[3].x = pCutFrame->width - 1; srcTri[3].y = pCutFrame->height - 1; //改变目标图像大小 dstTri[0].x = 0; dstTri[0].y = 0; dstTri[1].x = pCutFrImg->width - 1; dstTri[1].y = 0; dstTri[2].x = 0; dstTri[2].y = pCutFrImg->height - 1; dstTri[3].x = pCutFrImg->width - 1; dstTri[3].y = pCutFrImg->height - 1; //获得矩阵 cvGetPerspectiveTransform(srcTri, dstTri, warp_mat); //反透视变换 cvWarpPerspective(pCutFrame, pCutFrImg, warp_mat); #endif //前景图转换为灰度图 cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY); //二值化前景图 cvThreshold(pCutFrImg, pCutFrImg, 80, 255.0, CV_THRESH_BINARY); //进行形态学滤波,去掉噪音 cvErode(pCutFrImg, pCutFrImg, 0, 2); cvDilate(pCutFrImg, pCutFrImg, 0, 2); //canny变化 cvCanny(pCutFrImg, pCutFrImg, 50, 120); //sobel变化 //Mat pCutFrMat(pCutFrImg); //Sobel(pCutFrMat, pCutFrMat, pCutFrMat.depth(), 1, 1); //laplacian变化 //Laplacian(pCutFrMat, pCutFrMat, pCutFrMat.depth()); #if 1 //0为下面的代码,1为上面的代码 #pragma region Hough直线检测 lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 15, 15); printf("Lines number: %d\n", lines->total); //画出直线 for (int i = 0; i total; i++){ CvPoint* line = (CvPoint*)cvGetSeqElem(lines, i); double k = ((line[0].y - line[1].y)*1.0 / (line[0].x - line[1].x)); cout<<"nFrmNum "< = 0){ break; } } } //销毁窗口 cvDestroyWindow("video"); cvDestroyWindow("BWmode"); //释放图像 cvReleaseImage(&pCutFrImg); cvReleaseImage(&pCutFrame); cvReleaseCapture(&pCapture); return 0; }
mylinedetect.h
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include#include #include using namespace cv; using namespace std; const double pi = 3.1415926f; const double RADIAN = 180.0 / pi; struct line{ int theta; int r; }; vector detectLine(Mat &img, int threshold){ vector lines; int diagonal = floor(sqrt(img.rows*img.rows + img.cols*img.cols)); vector< vector >p(360, vector (diagonal)); //统计数量 for (int j = 0; j < img.rows; j++) { for (int i = 0; i < img.cols; i++) { if (img.at (j, i) > 0){ for (int theta = 0; theta < 360; theta++){ int r = floor(i*cos(theta / RADIAN) + j*sin(theta / RADIAN)); if (r < 0) continue; p[theta][r]++; } } } } //获得最大值 for (int theta = 0; theta < 360; theta++){ for (int r = 0; r < diagonal; r++){ int thetaLeft = max(0, theta - 1); int thetaRight = min(359, theta + 1); int rLeft = max(0, r - 1); int rRight = min(diagonal - 1, r + 1); int tmp = p[theta][r]; if (tmp > threshold && tmp > p[thetaLeft][rLeft] && tmp > p[thetaLeft][r] && tmp > p[thetaLeft][rRight] && tmp > p[theta][rLeft] && tmp > p[theta][rRight] && tmp > p[thetaRight][rLeft] && tmp > p[thetaRight][r] && tmp > p[thetaRight][rRight]){ struct line newline; newline.theta = theta; newline.r = r; lines.push_back(newline); } } } return lines; } void drawLines(Mat &img, const vector &lines){ for (int i = 0; i < lines.size(); i++){ vector points; int theta = lines[i].theta; int r = lines[i].r; double ct = cos(theta / RADIAN); double st = sin(theta / RADIAN); //公式 r = x*ct + y*st //计算左边 int y = int(r / st); if (y >= 0 && y < img.rows){ Point p(0, y); points.push_back(p); } //计算右边 y = int((r - ct*(img.cols - 1)) / st); if (y >= 0 && y < img.rows){ Point p(img.cols - 1, y); points.push_back(p); } //计算上边 int x = int(r / ct); if (x >= 0 && x < img.cols){ Point p(x, 0); points.push_back(p); } //计算下边 x = int((r - st*(img.rows - 1)) / ct); if (x >= 0 && x < img.cols){ Point p(x, img.rows - 1); points.push_back(p); } //画线 cv::line(img, points[0], points[1], Scalar(255, 0, 0), 5, CV_AA); } }
方法二:
#include#include #include #include #include using namespace std; int main(){ //声明IplImage指针 IplImage* pFrame = NULL; IplImage* pCutFrame = NULL; IplImage* pCutFrImg = NULL; IplImage* pCutBkImg = NULL; //声明CvMat指针 CvMat* pCutFrameMat = NULL; CvMat* pCutFrMat = NULL; CvMat* pCutBkMat = NULL; //声明CvCapture指针 CvCapture* pCapture = NULL; //声明CvMemStorage和CvSeg指针 CvMemStorage* storage = cvCreateMemStorage(); CvSeq* lines = NULL; //当前帧数 int nFrmNum = 0; //裁剪的天空高度 int CutHeight = 250; //窗口命名 cvNamedWindow("video", 1); //cvNamedWindow("background", 1); cvNamedWindow("foreground", 1); //调整窗口初始位置 cvMoveWindow("video", 300, 30); cvMoveWindow("background", 100, 100); cvMoveWindow("foreground", 300, 370); //不能打开则退出 if (!(pCapture = cvCaptureFromFile("lane.avi"))){ fprintf(stderr, "Can not open video file\n"); return -2; } //每次读取一桢的视频 while (pFrame = cvQueryFrame(pCapture)){ //设置ROI裁剪图像 cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight)); nFrmNum++; //第一次要申请内存p if (nFrmNum == 1){ pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels); cvCopy(pFrame, pCutFrame, 0); pCutBkImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1); pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1); pCutBkMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1); pCutFrMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1); pCutFrameMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1); //转化成单通道图像再处理 cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY); cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY); //转换成矩阵 cvConvert(pCutFrImg, pCutFrameMat); cvConvert(pCutFrImg, pCutFrMat); cvConvert(pCutFrImg, pCutBkMat); } else{ //获得剪切图 cvCopy(pFrame, pCutFrame, 0); //前景图转换为灰度图 cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY); cvConvert(pCutFrImg, pCutFrameMat); //高斯滤波先,以平滑图像 cvSmooth(pCutFrameMat, pCutFrameMat, CV_GAUSSIAN, 3, 0, 0.0); //当前帧跟背景图相减 cvAbsDiff(pCutFrameMat, pCutBkMat, pCutFrMat); //二值化前景图 cvThreshold(pCutFrMat, pCutFrImg, 35, 255.0, CV_THRESH_BINARY); //进行形态学滤波,去掉噪音 cvErode(pCutFrImg, pCutFrImg, 0, 1); cvDilate(pCutFrImg, pCutFrImg, 0, 1); //更新背景 cvRunningAvg(pCutFrameMat, pCutBkMat, 0.003, 0); //pCutBkMat = cvCloneMat(pCutFrameMat); //将背景转化为图像格式,用以显示 //cvConvert(pCutBkMat, pCutBkImg); cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY); //canny变化 cvCanny(pCutFrImg, pCutFrImg, 50, 100); #pragma region Hough检测 lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 30, 15); printf("Lines number: %d\n", lines->total); //画出直线 for (int i = 0; i total; i++){ CvPoint* line = (CvPoint* )cvGetSeqElem(lines, i); cvLine(pCutFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA); } #pragma endregion //显示图像 cvShowImage("video", pCutFrame); cvShowImage("background", pCutBkImg); cvShowImage("foreground", pCutFrImg); //按键事件,空格暂停,其他跳出循环 int temp = cvWaitKey(2); if (temp == 32){ while (cvWaitKey() == -1); } else if (temp >= 0){ break; } } //恢复ROI区域(多余可去掉) cvResetImageROI(pFrame); } //销毁窗口 cvDestroyWindow("video"); cvDestroyWindow("background"); cvDestroyWindow("foreground"); //释放图像和矩阵 cvReleaseImage(&pCutFrImg); cvReleaseImage(&pCutBkImg); cvReleaseImage(&pCutFrame); cvReleaseMat(&pCutFrameMat); cvReleaseMat(&pCutFrMat); cvReleaseMat(&pCutBkMat); cvReleaseCapture(&pCapture); return 0; }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持创新互联。