重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python函数拟合检验,怎么用python拟合函数

python拟合指数函数初始值如何设定

求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。

10多年的南浔网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站的优势是能够根据用户设备显示端的尺寸不同,自动调整南浔建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“南浔网站设计”,“南浔网站推广”以来,每个客户项目都认真落实执行。

一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。

Python最小二乘法拟合与作图

在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:

这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。

此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:

Python的使用中需要导入相应的模块,此处首先用 import 语句

分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。

接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:

其参数有:

进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:

紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:

返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。

leastsq() 的参数具体有:

输出选项有:

最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:

pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。

pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。

pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。

pylab.show() 函数用于显示图像。

最终结果如下图所示:

用Python作科学计算

numpy.loadtxt

scipy.optimize.leastsq

Python 怎么用曲线拟合数据

Python中利用guiqwt进行曲线数据拟合。

示例程序:

图形界面如下:

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:


文章名称:python函数拟合检验,怎么用python拟合函数
文章来源:http://cqcxhl.com/article/phiped.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP