重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Spark介绍
创新互联建站是一家专业提供法库企业网站建设,专注与成都网站建设、成都网站制作、H5响应式网站、小程序制作等业务。10年已为法库众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。
按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎。
通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及用Mlib来执行机器学习等。Java,python,scala及R语言的支持也是其通用性的表现之一。
快速: 这个可能是Spark成功的最初原因之一,主要归功于其基于内存的运算方式。当需要处理的数据需要反复迭代时,Spark可以直接在内存中暂存数据,而无需像Map Reduce一样需要把数据写回磁盘。官方的数据表明:它可以比传统的Map Reduce快上100倍。
大规模:原生支持HDFS,并且其计算节点支持弹性扩展,利用大量廉价计算资源并发的特点来支持大规模数据处理。
环境准备
MongoDB下载
解压安装
启动mongodb服务
$MONGODB_HOME/bin/mongod --fork --dbpath=/root/data/mongodb/ --logpath=/root/data/log/mongodb/mongodb.log
pom依赖
org.mongodb.spark mongo-spark-connector_2.11 ${spark.version}
实例代码
object ConnAppTest { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("ConnAppTest") .config("spark.mongodb.input.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输入 .config("spark.mongodb.output.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输出 .getOrCreate() // 生成测试数据 val documents = spark.sparkContext.parallelize((1 to 10).map(i => Document.parse(s"{test: $i}"))) // 存储数据到mongodb MongoSpark.save(documents) // 加载数据 val rdd = MongoSpark.load(spark) // 打印输出 rdd.show } }
总结
以上所述是小编给大家介绍的Spark整合Mongodb的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对创新互联网站的支持!