重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
(1)什么是优先级队列?
成都创新互联公司-专业网站定制、快速模板网站建设、高性价比相城网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式相城网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖相城地区。费用合理售后完善,10余年实体公司更值得信赖。
(2)怎么实现一个优先级队列?
(3)PriorityQueue是线程安全的吗?
(4)PriorityQueue就有序的吗?
优先级队列,是0个或多个元素的集合,集合中的每个元素都有一个权重值,每次出队都弹出优先级最大或最小的元素。
一般来说,优先级队列使用堆来实现。
还记得堆的相关知识吗?链接直达【拜托,面试别再问我堆(排序)了!】。
那么Java里面是如何通过“堆”这个数据结构来实现优先级队列的呢?
让我们一起来学习吧。
// 默认容量
private static final int DEFAULT_INITIAL_CAPACITY = 11;
// 存储元素的地方
transient Object[] queue; // non-private to simplify nested class access
// 元素个数
private int size = 0;
// 比较器
private final Comparator super E> comparator;
// 修改次数
transient int modCount = 0; // non-private to simplify nested class access
(1)默认容量是11;
(2)queue,元素存储在数组中,这跟我们之前说的堆一般使用数组来存储是一致的;
(3)comparator,比较器,在优先级队列中,也有两种方式比较元素,一种是元素的自然顺序,一种是通过比较器来比较;
(4)modCount,修改次数,有这个属性表示PriorityQueue也是fast-fail的;
不知道fast-fail的,查看这篇文章的彩蛋部分:【死磕 java集合之HashSet源码分析】。
入队有两个方法,add(E e)和offer(E e),两者是一致的,add(E e)也是调用的offer(E e)。
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
// 不支持null元素
if (e == null)
throw new NullPointerException();
modCount++;
// 取size
int i = size;
// 元素个数达到最大容量了,扩容
if (i >= queue.length)
grow(i + 1);
// 元素个数加1
size = i + 1;
// 如果还没有元素
// 直接插入到数组第一个位置
// 这里跟我们之前讲堆不一样了
// java里面是从0开始的
// 我们说的堆是从1开始的
if (i == 0)
queue[0] = e;
else
// 否则,插入元素到数组size的位置,也就是最后一个元素的下一位
// 注意这里的size不是数组大小,而是元素个数
// 然后,再做自下而上的堆化
siftUp(i, e);
return true;
}
private void siftUp(int k, E x) {
// 根据是否有比较器,使用不同的方法
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable super E> key = (Comparable super E>) x;
while (k > 0) {
// 找到父节点的位置
// 因为元素是从0开始的,所以减1之后再除以2
int parent = (k - 1) >>> 1;
// 父节点的值
Object e = queue[parent];
// 比较插入的元素与父节点的值
// 如果比父节点大,则跳出循环
// 否则交换位置
if (key.compareTo((E) e) >= 0)
break;
// 与父节点交换位置
queue[k] = e;
// 现在插入的元素位置移到了父节点的位置
// 继续与父节点再比较
k = parent;
}
// 最后找到应该插入的位置,放入元素
queue[k] = key;
}
(1)入队不允许null元素;
(2)如果数组不够用了,先扩容;
(3)如果还没有元素,就插入下标0的位置;
(4)如果有元素了,就插入到最后一个元素往后的一个位置(实际并没有插入哈);
(5)自下而上堆化,一直往上跟父节点比较;
(6)如果比父节点小,就与父节点交换位置,直到出现比父节点大为止;
(7)由此可见,PriorityQueue是一个小顶堆。
private void grow(int minCapacity) {
// 旧容量
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
// 旧容量小于64时,容量翻倍
// 旧容量大于等于64,容量只增加旧容量的一半
int newCapacity = oldCapacity + ((oldCapacity < 64) ?
(oldCapacity + 2) :
(oldCapacity >> 1));
// overflow-conscious code
// 检查是否溢出
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 创建出一个新容量大小的新数组并把旧数组元素拷贝过去
queue = Arrays.copyOf(queue, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
(1)当数组比较小(小于64)的时候每次扩容容量翻倍;
(2)当数组比较大的时候每次扩容只增加一半的容量;
出队有两个方法,remove()和poll(),remove()也是调用的poll(),只是没有元素的时候抛出异常。
public E remove() {
// 调用poll弹出队首元素
E x = poll();
if (x != null)
// 有元素就返回弹出的元素
return x;
else
// 没有元素就抛出异常
throw new NoSuchElementException();
}
@SuppressWarnings("unchecked")
public E poll() {
// 如果size为0,说明没有元素
if (size == 0)
return null;
// 弹出元素,元素个数减1
int s = --size;
modCount++;
// 队列首元素
E result = (E) queue[0];
// 队列末元素
E x = (E) queue[s];
// 将队列末元素删除
queue[s] = null;
// 如果弹出元素后还有元素
if (s != 0)
// 将队列末元素移到队列首
// 再做自上而下的堆化
siftDown(0, x);
// 返回弹出的元素
return result;
}
private void siftDown(int k, E x) {
// 根据是否有比较器,选择不同的方法
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftDownComparable(int k, E x) {
Comparable super E> key = (Comparable super E>)x;
// 只需要比较一半就行了,因为叶子节点占了一半的元素
int half = size >>> 1; // loop while a non-leaf
while (k < half) {
// 寻找子节点的位置,这里加1是因为元素从0号位置开始
int child = (k << 1) + 1; // assume left child is least
// 左子节点的值
Object c = queue[child];
// 右子节点的位置
int right = child + 1;
if (right < size &&
((Comparable super E>) c).compareTo((E) queue[right]) > 0)
// 左右节点取其小者
c = queue[child = right];
// 如果比子节点都小,则结束
if (key.compareTo((E) c) <= 0)
break;
// 如果比最小的子节点大,则交换位置
queue[k] = c;
// 指针移到最小子节点的位置继续往下比较
k = child;
}
// 找到正确的位置,放入元素
queue[k] = key;
}
(1)将队列首元素弹出;
(2)将队列末元素移到队列首;
(3)自上而下堆化,一直往下与最小的子节点比较;
(4)如果比最小的子节点大,就交换位置,再继续与最小的子节点比较;
(5)如果比最小的子节点小,就不用交换位置了,堆化结束;
(6)这就是堆中的删除堆顶元素;
取队首元素有两个方法,element()和peek(),element()也是调用的peek(),只是没取到元素时抛出异常。
public E element() {
E x = peek();
if (x != null)
return x;
else
throw new NoSuchElementException();
}
public E peek() {
return (size == 0) ? null : (E) queue[0];
}
(1)如果有元素就取下标0的元素;
(3)如果没有元素就返回null,element()抛出异常;
(1)PriorityQueue是一个小顶堆;
(2)PriorityQueue是非线程安全的;
(3)PriorityQueue不是有序的,只有堆顶存储着最小的元素;
(4)入队就是堆的插入元素的实现;
(5)出队就是堆的删除元素的实现;
(6)还不懂堆?看一看这篇文章【拜托,面试别再问我堆(排序)了!】。
(1)论Queue中的那些方法?
Queue是所有队列的顶级接口,它里面定义了一批方法,它们有什么区别呢?
操作 | 抛出异常 | 返回特定值 |
---|---|---|
入队 | add(e) | offer(e)——false |
出队 | remove() | poll()——null |
检查 | element() | peek()——null |
(2)为什么PriorityQueue中的add(e)方法没有做异常检查呢?
因为PriorityQueue是无限增长的队列,元素不够用了会扩容,所以添加元素不会失败。
欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。