重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Python中怎么创建一个可视化地图,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
新邱ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!
import vincent world_countries = r'world-countries.json' world = vincent.Map(width=1200, height=1000) world.geo_data(projection='winkel3', scale=200, world=world_countries) world.to_json(path)
当我开始建造Vincent时, 我的一个目的就是使得地图的建造尽可能合理化. 有一些很棒的python地图库-参见Basemap 和 Kartograph能让地图更有意思. 我强烈推荐这两个工具, 因为他们都很好用而且很强大. 我想有更简单一些的工具,能依靠Vega的力量并且允许简单的语法点到geoJSON文件,详细描述一个投影和大小/比列,***输出地图.
例如, 将地图数据分层来建立更复杂的地图:
vis = vincent.Map(width=1000, height=800) #Add the US county data and a new line color vis.geo_data(projection='albersUsa', scale=1000, counties=county_geo) vis + ('2B4ECF', 'marks', 0, 'properties', 'enter', 'stroke', 'value') #Add the state data, remove the fill, write Vega spec output to JSON vis.geo_data(states=state_geo) vis - ('fill', 'marks', 1, 'properties', 'enter') vis.to_json(path)
加之,等值线地图需绑定Pandas数据,需要数据列直接映射到地图要素.假设有一个从geoJSON到列数据的1:1映射,它的语法是非常简单的:
#'merged' is the Pandas DataFrame vis = vincent.Map(width=1000, height=800) vis.tabular_data(merged, columns=['FIPS_Code', 'Unemployment_rate_2011']) vis.geo_data(projection='albersUsa', scale=1000, bind_data='data.id', counties=county_geo) vis + (["#f5f5f5","#000045"], 'scales', 0, 'range') vis.to_json(path)
我们的数据并非没有争议无需改造——用户需要确保 geoJSON 键与熊猫数据框架之间具有1:1的映射。下面就是之前实例所需的简明的数据框架映射:我们的国家信息是一个列有FIPS 码、国家名称、以及经济信息(列名省略)的 CSV 文件:
00000,US,United States,154505871,140674478,13831393,9,50502,100 01000,AL,Alabama,2190519,1993977,196542,9,41427,100 01001,AL,Autauga County,25930,23854,2076,8,48863,117.9 01003,AL,Baldwin County,85407,78491,6916,8.1,50144,121 01005,AL,Barbour County,9761,8651,1110,11.4,30117,72.7
在 geoJSON 中,我们的国家形状是以 FIPS 码为id 的(感谢 fork 自 Trifacta 的相关信息)。为了简便,实际形状已经做了简略,在示例数据可以找到完整的数据集:
{"type":"FeatureCollection","features":[ {"type":"Feature","id":"1001","properties":{"name":"Autauga"} {"type":"Feature","id":"1003","properties":{"name":"Baldwin"} {"type":"Feature","id":"1005","properties":{"name":"Barbour"} {"type":"Feature","id":"1007","properties":{"name":"Bibb"} {"type":"Feature","id":"1009","properties":{"name":"Blount"} {"type":"Feature","id":"1011","properties":{"name":"Bullock"} {"type":"Feature","id":"1013","properties":{"name":"Butler"} {"type":"Feature","id":"1015","properties":{"name":"Calhoun"} {"type":"Feature","id":"1017","properties":{"name":"Chambers"} {"type":"Feature","id":"1019","properties":{"name":"Cherokee"}
我们需要匹配 FIPS 码,确保匹配正确,否则 Vega 无法正确的压缩数据:
import json import pandas as pd #Map the county codes we have in our geometry to those in the #county_data file, which contains additional rows we don't need with open(county_geo, 'r') as f: get_id = json.load(f) #Grab the FIPS codes and load them into a dataframe county_codes = [x['id'] for x in get_id['features']] county_df = pd.DataFrame({'FIPS_Code': county_codes}, dtype=str) #Read into Dataframe, cast to string for consistency df = pd.read_csv(county_data, na_values=[' ']) df['FIPS_Code'] = df['FIPS_Code'].astype(str) #Perform an inner join, pad NA's with data from nearest county merged = pd.merge(df, county_df, on='FIPS_Code', how='inner') merged = merged.fillna(method='pad') >>>merged.head() FIPS_Code State Area_name Civilian_labor_force_2011 Employed_2011 \ 0 1001 AL Autauga County 25930 23854 1 1003 AL Baldwin County 85407 78491 2 1005 AL Barbour County 9761 8651 3 1007 AL Bibb County 9216 8303 4 1009 AL Blount County 26347 24156 Unemployed_2011 Unemployment_rate_2011 Median_Household_Income_2011 \ 0 2076 8.0 48863 1 6916 8.1 50144 2 1110 11.4 30117 3 913 9.9 37347 4 2191 8.3 41940 Med_HH_Income_Percent_of_StateTotal_2011 0 117.9 1 121.0 2 72.7 3 90.2 4 101.2
现在,我们可以快速生成不同的等值线:
vis.tabular_data(merged, columns=['FIPS_Code', 'Civilian_labor_force_2011']) vis.to_json(path)
这只能告诉我们 LA 和 King 面积非常大,人口非常稠密。让我们再看看中等家庭收入:
vis.tabular_data(merged, columns=['FIPS_Code', 'Median_Household_Income_2011']) vis.to_json(path)
明显很多高收入区域在东海岸或是其他高密度区域。我敢打赌,在城市层级这将更加有趣,但这需要等以后发布的版本。让我们快速重置地图,再看看国家失业率:
#Swap county data for state data, reset map state_data = pd.read_csv(state_unemployment) vis.tabular_data(state_data, columns=['State', 'Unemployment']) vis.geo_data(bind_data='data.id', reset=True, states=state_geo) vis.update_map(scale=1000, projection='albersUsa') vis + (['#c9cedb', '#0b0d11'], 'scales', 0, 'range') vis.to_json(path)
关于Python中怎么创建一个可视化地图问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。