重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

C#通过KD树进行距离最近点的查找的案例-创新互联

小编给大家分享一下C#通过KD树进行距离最近点的查找的案例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

专注于为中小企业提供成都网站建设、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业苍南免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了超过千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

1. KD树介绍

Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找。我实现的KD树是二维的Kd - tree。目的是在点集中寻找最近点。参考资料是Kd-Tree的百度百科。并且根据百度百科的逻辑组织了代码。

2. KD树的数学解释

3. KD树的构造方法

这里是用的二维点集进行构造Kd-tree。三维的与此类似。
树中每个节点的数据类型:

public class KDTreeNode
  {
    /// 
    /// 分裂点
    /// 
    public Point pisionPoint { get; set; }

    /// 
    /// 分裂类型
    /// 
    public EnumpisionType pisionType { get; set; }

    /// 
    /// 左子节点
    /// 
    public KDTreeNode LeftChild { get; set; }

    /// 
    /// 右子节点
    /// 
    public KDTreeNode RightChild { get; set; }
  }

3.1 KD树构造逻辑流程

  • 将所有的点放入集合a中

  • 对集合所有点的X坐标求得方差xv,Y坐标求得方差yv

  • 如果xv > yv,则对集合a根据X坐标进行排序。如果 yv > xv,则对集合a根据y坐标进行排序。

  • 得到排序后a集合的中位数m。则以m为断点,将[0,m-2]索引的点放到a1集合中。将[m,a.count]索引的点放到a2的集合中(m点的索引为m-1)。

  • 构建节点,节点的值为a[m-1],如果操作集合中节点的个数大于1,则左节点对[0,m-2]重复2-5步,右节点为对[m,a.count]重复2-5步;反之,则该节点为叶子节点。

3.2 代码实现

private KDTreeNode CreateTreeNode(List pointList)
{
  if (pointList.Count > 0)
  {
    // 计算方差
    double xObtainVariance = ObtainVariance(CreateXList(pointList));
    double yObtainVariance = ObtainVariance(CreateYList(pointList));

    // 根据方差确定分裂维度
    EnumpisionType pisionType = SortListByXOrYVariances(xObtainVariance,    yObtainVariance, ref pointList);

    // 获得中位数
    Point medianPoint = ObtainMedian(pointList);
    int medianIndex = pointList.Count / 2;

    // 构建节点
    KDTreeNode treeNode = new KDTreeNode()
    {
      pisionPoint = medianPoint,
      pisionType = pisionType,
      LeftChild = CreateTreeNode(pointList.Take(medianIndex).ToList()),
      RightChild = CreateTreeNode(pointList.Skip(medianIndex + 1).ToList())
    };
    return treeNode;
  }
  else
  {
    return null;
  }
}

4. KD树搜索方法

Kd-Tree的总体搜索流程先根据普通的查找找到一个最近的叶子节点。但是这个叶子节点不一定是最近的点。再进行回溯的操作找到最近点。

4.1 KD树搜索逻辑流程

  • 对于根据点集构建的树t,以及查找点p.将根节点作为节点t进行如下的操作

  • 如果t为叶子节点。则得到最近点n的值为t的分裂点的值,跳到第5步;如果t不是叶子节点,进行第3步

  • 则确定t的分裂方式,如果是按照x轴进行分裂,则用p的x值与节点的分裂点的x值进行比较,反之则进行Y坐标的比较

  • 如果p的比较值小于t的比较值,则将t指定为t的左孩子节点。反之将t指定为t的右孩子节点,执行第2步

  • 定义检索点m,将m设置为n

  • 计算m与p的距离d1,n与m的距离d2。

  • 如果d1 >= d2且有父节点,则将m的父节点作为m的值执行5步,若没有父节点,则得到真正的最近点TN; 如果d1 < d2就表示n点不是最近点,执行第8步

  • 若n有兄弟节点,则 n = n的兄弟节点;若n没有兄弟节点,则 n = n的父节点。删除原来的n节点。将m的值设置为新的n节点;执行第6步。

4.2 代码实现

public Point FindNearest(Point searchPoint)
{
  // 按照查找方式寻找最近点
  Point nearestPoint = DFSSearch(this.rootNode, searchPoint);
  
  // 进行回溯
  return BacktrcakSearch(searchPoint, nearestPoint);
}


private Point DFSSearch(KDTreeNode node,Point searchPoint,bool pushStack = true)
{
  if(pushStack == true)
  {
    // 利用堆栈记录查询的路径,由于树节点中没有记载父节点的原因
    backtrackStack.Push(node);
  }
  if (node.pisionType == EnumpisionType.X)
  {
    return DFSXsearch(node,searchPoint);
  }
  else
  {
    return DFSYsearch(node, searchPoint);
  }
}

private Point BacktrcakSearch(Point searchPoint,Point nearestPoint)
{
  // 如果记录路径的堆栈为空则表示已经回溯到根节点,则查到的最近点就是真正的最近点
  if (backtrackStack.IsEmpty())
  {
    return nearestPoint;
  }
  else
  {
    KDTreeNode trackNode = backtrackStack.Pop();
    
    // 分别求回溯点与最近点距查找点的距离
    double backtrackDistance = ObtainDistanFromTwoPoint(searchPoint,     trackNode.pisionPoint);
    double nearestPointDistance = ObtainDistanFromTwoPoint(searchPoint, nearestPoint);
    
    if (backtrackDistance < nearestPointDistance)
    {
      // 深拷贝节点的目的是为了避免损坏树
      KDTreeNode searchNode = new KDTreeNode()
      {
        pisionPoint = trackNode.pisionPoint,
        pisionType = trackNode.pisionType,
        LeftChild = trackNode.LeftChild,
        RightChild = trackNode.RightChild
      };
      nearestPoint = DFSBackTrackingSearch(searchNode, searchPoint);
   }
   // 递归到根节点
   return BacktrcakSearch(searchPoint, nearestPoint);
  }
}

以上是C#通过KD树进行距离最近点的查找的案例的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网页题目:C#通过KD树进行距离最近点的查找的案例-创新互联
当前路径:http://cqcxhl.com/article/shdjp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP