重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python中反正切函数,反正切函数减法

PYTHON实现对CSV文件多维不同单位数据的归一化处理

1)线性归一化

目前成都创新互联公司已为1000+的企业提供了网站建设、域名、雅安服务器托管网站托管运营、企业网站设计、源城网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。

2)标准差标准化

经过处理的数据符合标准正态分布,即均值为0,标准差为1。

3)非线性归一化

经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。

log函数:x = lg(x)/lg(max)

反正切函数:x = atan(x)*2/pi

Python实现

线性归一化

定义数组:x = numpy.array(x)

获取二维数组列方向的最大值:x.max(axis = 0)

获取二维数组列方向的最小值:x.min(axis = 0)

对二维数组进行线性归一化:

def max_min_normalization(data_value, data_col_max_values, data_col_min_values):

""" Data normalization using max value and min value

Args:

data_value: The data to be normalized

data_col_max_values: The maximum value of data's columns

data_col_min_values: The minimum value of data's columns

"""

data_shape = data_value.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value[i][j] = \

(data_value[i][j] - data_col_min_values[j]) / \

(data_col_max_values[j] - data_col_min_values[j])

标准差归一化

定义数组:x = numpy.array(x)

获取二维数组列方向的均值:x.mean(axis = 0)

获取二维数组列方向的标准差:x.std(axis = 0)

对二维数组进行标准差归一化:

def standard_deviation_normalization(data_value, data_col_means,

data_col_standard_deviation):

""" Data normalization using standard deviation

Args:

data_value: The data to be normalized

data_col_means: The means of data's columns

data_col_standard_deviation: The variance of data's columns

"""

data_shape = data_value.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value[i][j] = \

(data_value[i][j] - data_col_means[j]) / \

data_col_standard_deviation[j]

非线性归一化(以lg为例)

定义数组:x = numpy.array(x)

获取二维数组列方向的最大值:x.max(axis=0)

获取二维数组每个元素的lg值:numpy.log10(x)

获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))

对二维数组使用lg进行非线性归一化:

def nonlinearity_normalization_lg(data_value_after_lg,

data_col_max_values_after_lg):

""" Data normalization using lg

Args:

data_value_after_lg: The data to be normalized

data_col_max_values_after_lg: The maximum value of data's columns

"""

data_shape = data_value_after_lg.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value_after_lg[i][j] = \

data_value_after_lg[i][j] / data_col_max_values_after_lg[j]

tan的-1次方Python怎么敲

计算器上一般用shift键,再按的tan输入,就是tan的负一次方的。

计算机先选科学型,然后在度与弧度下面有个inv键,按了它后就有tan-1次方,就是arctan的意思,arctan是正切的反函数,计算器上一般用shift键加tan键,就是tan的负一次方的那个。

科学型计算器一般都可以计算,常见的有夏普计算器、卡西欧计算器、得力计算器。arctan也可以写作arctg,是反正切函数,你看看计算机上有没有arctan或者arc^-1注意各个键位上的标示以及该键位所对应的功能键标示,有些功能要先按shift键、alpha等功能。

python之数学相关模块

先来看一下 math 模块中包含内容,如下所示:

接下来具体看一下该模块的常用函数和常量。

ceil(x)

返回 x 的上限,即大于或者等于 x 的最小整数。看下示例:

floor(x)

返回 x 的向下取整,小于或等于 x 的最大整数。看下示例:

fabs(x)

返回 x 的绝对值。看下示例:

fmod(x, y)

返回 x/y 的余数,值为浮点数。看下示例:

factorial(x)

返回 x 的阶乘,如果 x 不是整数或为负数时则将引发 ValueError。看下示例:

pow(x, y)

返回 x 的 y 次幂。看下示例:

fsum(iterable)

返回迭代器中所有元素的和。看下示例:

gcd(x, y)

返回整数 x 和 y 的最大公约数。看下示例:

sqrt(x)

返回 x 的平方根。看下示例:

trunc(x)

返回 x 的整数部分。看下示例:

exp(x)

返回 e 的 x 次幂。看下示例:

log(x[, base])

返回 x 的对数,底数默认为 e。看下示例:

常量

tan(x)

返回 x 弧度的正切值。看下示例:

atan(x)

返回 x 的反正切值。看下示例:

sin(x)

返回 x 弧度的正弦值。看下示例:

asin(x)

返回 x 的反正弦值。看下示例:

cos(x)

返回 x 弧度的余弦值。看下示例:

acos(x)

返回 x 的反余弦值。看下示例:

decimal 模块为正确舍入十进制浮点运算提供了支持,相比内置的浮点类型 float,它能更加精确的控制精度,能够为精度要求较高的金融等领域提供支持。

decimal 在一个独立的 context 下工作,可以使用 getcontext() 查看当前上下文,如下所示:

从上面的结果中我们可以看到 prec=28,这就是默认的精度,我们可以使用 getcontext().prec = xxx 来重新设置精度。接下来通过具体示例看一下。

基本运算

执行结果:

上面结果是用了默认精度,我们重新设置下精度再来看一下:

执行结果:

random 模块可以生成随机数,我们来看一下其常用函数。

random()

返回 [0.0, 1.0) 范围内的一个随机浮点数。看下示例:

uniform(a, b)

返回 [a, b) 范围内的一个随机浮点数。看下示例:

randint(a, b)

返回 [a, b] 范围内的一个随机整数。看下示例:

randrange(start, stop[, step])

返回 [start, stop) 范围内步长为 step 的一个随机整数。看下示例:

choice(seq)

从非空序列 seq 返回一个随机元素。 看下示例:

shuffle(x[, random])

将序列 x 随机打乱位置。看下示例:

sample(population, k)

返回从总体序列或集合中选择的唯一元素的 k 长度列表,用于无重复的随机抽样。看下示例:

参考:

Python--math库

Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。

使用dir函数,查看math库中包含的所有内容:

1) math.pi    # 圆周率π

2) math.e    #自然对数底数

3) math.inf    #正无穷大∞,-math.inf    #负无穷大-∞

4) math.nan    #非浮点数标记,NaN(not a number)

1) math.fabs(x)    #表示X值的绝对值

2) math.fmod(x,y)    #表示x/y的余数,结果为浮点数

3) math.fsum([x,y,z])    #对括号内每个元素求和,其值为浮点数

4) math.ceil(x)    #向上取整,返回不小于x的最小整数

5)math.floor(x)    #向下取整,返回不大于x的最大整数

6) math.factorial(x)    #表示X的阶乘,其中X值必须为整型,否则报错

7) math.gcd(a,b)    #表示a,b的最大公约数

8)  math.frexp(x)      #x = i *2^j,返回(i,j)

9) math.ldexp(x,i)    #返回x*2^i的运算值,为math.frexp(x)函数的反运算

10) math.modf(x)    #表示x的小数和整数部分

11) math.trunc(x)    #表示x值的整数部分

12) math.copysign(x,y)    #表示用数值y的正负号,替换x值的正负号

13) math.isclose(a,b,rel_tol =x,abs_tol = y)    #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。

14) math.isfinite(x)    #表示当x不为无穷大时,返回True,否则返回False

15) math.isinf(x)    #当x为±∞时,返回True,否则返回False

16) math.isnan(x)    #当x是NaN,返回True,否则返回False

1) math.pow(x,y)    #表示x的y次幂

2) math.exp(x)    #表示e的x次幂

3) math.expm1(x)    #表示e的x次幂减1

4) math.sqrt(x)    #表示x的平方根

5) math.log(x,base)    #表示x的对数值,仅输入x值时,表示ln(x)函数

6) math.log1p(x)    #表示1+x的自然对数值

7) math.log2(x)    #表示以2为底的x对数值

8) math.log10(x)    #表示以10为底的x的对数值

1) math.degrees(x)    #表示弧度值转角度值

2) math.radians(x)    #表示角度值转弧度值

3) math.hypot(x,y)    #表示(x,y)坐标到原点(0,0)的距离

4) math.sin(x)    #表示x的正弦函数值

5) math.cos(x)    #表示x的余弦函数值

6) math.tan(x)    #表示x的正切函数值

7)math.asin(x)    #表示x的反正弦函数值

8) math.acos(x)    #表示x的反余弦函数值

9) math.atan(x)    #表示x的反正切函数值

10) math.atan2(y,x)    #表示y/x的反正切函数值

11) math.sinh(x)    #表示x的双曲正弦函数值

12) math.cosh(x)    #表示x的双曲余弦函数值

13) math.tanh(x)    #表示x的双曲正切函数值

14) math.asinh(x)    #表示x的反双曲正弦函数值

15) math.acosh(x)    #表示x的反双曲余弦函数值

16) math.atanh(x)    #表示x的反双曲正切函数值

1)math.erf(x)    #高斯误差函数

2) math.erfc(x)    #余补高斯误差函数

3) math.gamma(x)    #伽马函数(欧拉第二积分函数)

4) math.lgamma(x)    #伽马函数的自然对数

arctan换算角度——python实现

对于平面坐标系,任一射线OP与x轴夹角 θ 的范围,可以取[0,2π)或者(-π,π],如无特殊说明, 我们统一使用后者。

将笛卡尔空间坐标系中的点 Pc = ( x , y , z ) 表示成球体坐标系中的形式 Ps = ( θ , ϕ , r ) 。

atan2(b,a)是4象限反正切,它的取值不仅取决于正切值b/a,还取决于点(b,a) 落入哪个象限:

而 atan(b/a) 仅仅根据正切值为a/b求出对应的角度 (可以看作仅仅是2象限反正切):

结论: atan 和 atan2函数,建议用 atan2函数

参考文章:

如何用python表示三角函数

在python中,有一个math module,你可以import math,里面有math.sin(), math.cos(), math.asin()和math.acos()四个函数。相信你也知道asin和acos的意思,就是arcsin和arccos。有了这四个函数你就可以求函数值和角度了。但是要注意括号里面填的数值,要用弧度制。


分享标题:python中反正切函数,反正切函数减法
转载来源:http://cqcxhl.com/article/heicop.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP